文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review.

作者信息

Uthappa Uluvangada Thammaiah, Suneetha Maduru, Ajeya Kanalli V, Ji Seong Min

机构信息

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea.

Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India.

出版信息

Pharmaceutics. 2023 Jun 12;15(6):1713. doi: 10.3390/pharmaceutics15061713.


DOI:10.3390/pharmaceutics15061713
PMID:37376161
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10302411/
Abstract

The use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consideration owing to their exceptional physical and chemical features. However, due to the limitations, such as specificity and toxicity towards healthy cells, their application in clinical translations has been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors overexpressed on cancer cells. The HA-modified M-NPs have demonstrated promising results in improving specificity and efficacy in cancer therapy. This review discusses the significance of nanotechnology, the state of cancers, and the functions of HA-modified M-NPs, and other substituents in cancer therapy applications. Additionally, the role of various types of selected noble and non-noble M-NPs used in cancer therapy are described, along with the mechanisms involved in cancer targeting. Additionally, the purpose of HA, its sources and production processes, as well as its chemical and biological properties are described. In-depth explanations are provided about the contemporary applications of HA-modified noble and non-noble M-NPs and other substituents in cancer therapy. Furthermore, potential obstacles in optimizing HA-modified M-NPs, in terms of clinical translations, are discussed, followed by a conclusion and future prospects.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/31e92c830ae3/pharmaceutics-15-01713-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/e9c089fb9315/pharmaceutics-15-01713-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/4c5a0cfbbbf1/pharmaceutics-15-01713-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/0110478bc588/pharmaceutics-15-01713-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/7d4e1129a860/pharmaceutics-15-01713-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/6c874f0dd1ab/pharmaceutics-15-01713-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/24956fd9fa70/pharmaceutics-15-01713-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/700230df16d2/pharmaceutics-15-01713-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/fd7735777fa5/pharmaceutics-15-01713-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/3750ebef9d0b/pharmaceutics-15-01713-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/6168967d8705/pharmaceutics-15-01713-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/30ce31cb0ecd/pharmaceutics-15-01713-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/77e8d7264554/pharmaceutics-15-01713-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/d3a3da9bc671/pharmaceutics-15-01713-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/119e450284ad/pharmaceutics-15-01713-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/31e92c830ae3/pharmaceutics-15-01713-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/e9c089fb9315/pharmaceutics-15-01713-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/4c5a0cfbbbf1/pharmaceutics-15-01713-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/0110478bc588/pharmaceutics-15-01713-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/7d4e1129a860/pharmaceutics-15-01713-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/6c874f0dd1ab/pharmaceutics-15-01713-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/24956fd9fa70/pharmaceutics-15-01713-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/700230df16d2/pharmaceutics-15-01713-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/fd7735777fa5/pharmaceutics-15-01713-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/3750ebef9d0b/pharmaceutics-15-01713-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/6168967d8705/pharmaceutics-15-01713-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/30ce31cb0ecd/pharmaceutics-15-01713-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/77e8d7264554/pharmaceutics-15-01713-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/d3a3da9bc671/pharmaceutics-15-01713-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/119e450284ad/pharmaceutics-15-01713-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d07/10302411/31e92c830ae3/pharmaceutics-15-01713-g015.jpg

相似文献

[1]
Hyaluronic Acid Modified Metal Nanoparticles and Their Derived Substituents for Cancer Therapy: A Review.

Pharmaceutics. 2023-6-12

[2]
One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.

Carbohydr Polym. 2020-3-6

[3]
Drug delivery systems based on CD44-targeted glycosaminoglycans for cancer therapy.

Carbohydr Polym. 2021-1-1

[4]
Hyaluronic acid/polyethylene glycol nanoparticles for controlled delivery of mitoxantrone.

Artif Cells Nanomed Biotechnol. 2017-5-14

[5]
Biodegradable nanoparticles sequentially decorated with Polyethyleneimine and Hyaluronan for the targeted delivery of docetaxel to airway cancer cells.

J Nanobiotechnology. 2015-4-3

[6]
Hyaluronan-based nanocarriers with CD44-overexpressed cancer cell targeting.

Pharm Res. 2014-11

[7]
Self-assembled tumor-targeting hyaluronic acid nanoparticles for photothermal ablation in orthotopic bladder cancer.

Acta Biomater. 2017-4-15

[8]
Facile fabrication of robust, hyaluronic acid-surfaced and disulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel.

Acta Biomater. 2021-4-15

[9]
CD44-Targeted Carriers: The Role of Molecular Weight of Hyaluronic Acid in the Uptake of Hyaluronic Acid-Based Nanoparticles.

Pharmaceuticals (Basel). 2022-1-17

[10]
Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors.

Acta Biomater. 2022-11

引用本文的文献

[1]
Tumor versus Tumor Cell Targeting in Metal-Based Nanoparticles for Cancer Theranostics.

Int J Mol Sci. 2024-5-10

[2]
A Study of Hyaluronic Acid's Theoretical Reactivity and of Magnetic Nanoparticles Capped with Hyaluronic Acid.

Materials (Basel). 2024-3-7

[3]
Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials.

Polymers (Basel). 2023-11-28

[4]
A polymeric nanocarrier that eradicates breast cancer stem cells and delivers chemotherapeutic drugs.

Biomater Res. 2023-12-15

[5]
Mesoporous Titanium Dioxide Nanoparticles-Poly(N-isopropylacrylamide) Hydrogel Prepared by Electron Beam Irradiation Inhibits the Proliferation and Migration of Oral Squamous Cell Carcinoma Cells.

Polymers (Basel). 2023-9-5

本文引用的文献

[1]
Comprehensive review on biosynthesis of hyaluronic acid with different molecular weights and its biomedical applications.

Int J Biol Macromol. 2023-6-15

[2]
Targeted Nanodrugs to Destroy the Tumor Extracellular Matrix Barrier for Improving Drug Delivery and Cancer Therapeutic Efficacy.

Mol Pharm. 2023-5-1

[3]
Hyaluronic acid-covered piezoelectric nanocomposites as tumor microenvironment modulators for piezoelectric catalytic therapy of melanoma.

Int J Biol Macromol. 2023-5-1

[4]
Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy.

Pharmaceutics. 2023-1-14

[5]
Nanoceria: an innovative strategy for cancer treatment.

Cell Mol Life Sci. 2023-1-19

[6]
Hyaluronic acid/serotonin-decorated cerium dioxide nanomedicine for targeted treatment of ulcerative colitis.

Biomater Sci. 2023-1-17

[7]
Harnessing the dual role of polysaccharides in treating gastrointestinal diseases: As therapeutics and polymers for drug delivery.

Chem Biol Interact. 2022-12-1

[8]
CeO-Decorated Metal-Organic Framework for Enhanced Photodynamic Therapy.

Inorg Chem. 2022-10-17

[9]
Surface-Coated Cerium Nanoparticles to Improve Chemotherapeutic Delivery to Tumor Cells.

ACS Omega. 2022-9-1

[10]
Thiolated hyaluronic acid and catalase-enhanced CD44-targeting and oxygen self-supplying nanoplatforms with photothermal/photodynamic effects against hypoxic breast cancer cells.

Int J Biol Macromol. 2022-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索