Kang Seong Jae, Jeong Jun Hyung, Ma Jin Hyun, Park Min Ho, Ha Hyoun Ji, Yun Jung Min, Kim Yu Bin, Kang Seong Jun
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.
Integrated Education Program for Frontier Materials (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea.
Micromachines (Basel). 2024 Feb 25;15(3):318. doi: 10.3390/mi15030318.
Visible light photodetectors are extensively researched with transparent metal oxide holes/electron layers for various applications. Among the metal oxide transporting layers, nickel oxide (NiO) and zinc oxide (ZnO) are commonly adopted due to their wide band gap and high transparency. The objective of this study was to improve the visible light detection of NiO/ZnO photodiodes by introducing an additional quantum dot (QD) layer between the NiO and ZnO layers. Utilizing the unique property of QDs, we could select different sizes of QDs and responsive light wavelength ranges. The resulting red QDs utilized device that could detect light starting at 635 nm to UV (Ultra-violet) light wavelength and exhibited a photoresponsivity and external quantum efficiency (EQE) of 14.99 mA/W and 2.92% under 635 nm wavelength light illumination, respectively. Additionally, the green QDs, which utilized a device that could detect light starting at 520 nm, demonstrated photoresponsivity values of 8.34 mA/W and an EQE of 1.99% under 520 nm wavelength light illumination, respectively. In addition, we used X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) to investigate the origin of the photocurrents and the enhancement of the device's performance. This study suggests that incorporating QDs with metal oxide semiconductors is an effective approach for detecting visible light wavelengths in transparent optoelectronic devices.
可见光光电探测器因各种应用而广泛地与具有透明金属氧化物空穴/电子层的材料进行研究。在金属氧化物传输层中,氧化镍(NiO)和氧化锌(ZnO)因其宽带隙和高透明度而被普遍采用。本研究的目的是通过在NiO和ZnO层之间引入额外的量子点(QD)层来改善NiO/ZnO光电二极管的可见光探测性能。利用量子点的独特性质,我们可以选择不同尺寸的量子点和响应光波长范围。由此得到的红色量子点器件能够检测从635nm开始到紫外(UV)光波长的光,并且在635nm波长光照下分别表现出14.99 mA/W的光响应度和2.92%的外量子效率(EQE)。此外,绿色量子点器件能够检测从520nm开始的光,在520nm波长光照下分别表现出8.34 mA/W的光响应度值和1.99%的EQE。此外,我们使用X射线光电子能谱(XPS)和紫外光电子能谱(UPS)来研究光电流的起源以及器件性能的增强。本研究表明,将量子点与金属氧化物半导体结合是在透明光电器件中检测可见光波长的有效方法。