Department of Physics and Astronomy, University of Kansas , Lawrence, Kansas 66045, United States.
Department of Energy's National Security Campus , Kansas City, Missouri 64147, United States.
ACS Nano. 2017 Apr 25;11(4):4114-4123. doi: 10.1021/acsnano.7b00805. Epub 2017 Mar 24.
In ZnO quantum dot/graphene heterojunction photodetectors, fabricated by printing quantum dots (QDs) directly on the graphene field-effect transistor (GFET) channel, the combination of the strong quantum confinement in ZnO QDs and the high charge mobility in graphene allows extraordinary quantum efficiency (or photoconductive gain) in visible-blind ultraviolet (UV) detection. Key to the high performance is a clean van der Waals interface to facilitate an efficient charge transfer from ZnO QDs to graphene upon UV illumination. Here, we report a robust ZnO QD surface activation process and demonstrate that a transition from zero to extraordinarily high photoresponsivity of 9.9 × 10 A/W and a photoconductive gain of 3.6 × 10 can be obtained in ZnO QDs/GFET heterojunction photodetectors, as the ZnO QDs surface is systematically engineered using this process. The high figure-of-merit UV detectivity D* in exceeding 1 × 10 Jones represents more than 1 order of magnitude improvement over the best reported previously on ZnO nanostructure-based UV detectors. This result not only sheds light on the critical role of the van der Waals interface in affecting the optoelectronic process in ZnO QDs/GFET heterojunction photodetectors but also demonstrates the viability of printing quantum devices of high performance and low cost.
在 ZnO 量子点/石墨烯异质结光电探测器中,通过将量子点 (QD) 直接打印在石墨烯场效应晶体管 (GFET) 通道上制造而成, ZnO QD 中的强量子限制和石墨烯中的高电荷迁移率的结合允许在可见盲紫外 (UV) 检测中实现非凡的量子效率(或光电导增益)。 高性能的关键是具有清洁的范德华界面,以在 UV 照射下促进从 ZnO QD 到石墨烯的有效电荷转移。 在这里,我们报告了一种强大的 ZnO QD 表面激活过程,并证明通过使用该过程系统地对 ZnO QD 表面进行工程处理,可以在 ZnO QDs/GFET 异质结光电探测器中获得从零到非凡的光响应度 9.9×10 A/W 和光电导增益 3.6×10 的转变。 超过 1×10 琼斯的高品质因数 UV 探测率 D* 代表着在基于 ZnO 纳米结构的 UV 探测器上的最佳性能提高了 1 个数量级以上。 这一结果不仅阐明了范德华界面在影响 ZnO QDs/GFET 异质结光电探测器中的光电过程中的关键作用,而且还证明了打印高性能和低成本量子器件的可行性。