Division of Energy Systems Research, Ajou University, Suwon 443-749, Republic of Korea.
Nanotechnology. 2013 Mar 22;24(11):115201. doi: 10.1088/0957-4484/24/11/115201. Epub 2013 Feb 28.
We fabricated and characterized quantum-dot light emitting devices (QLEDs) that consisted of a CdSe/ZnS quantum-dot (QD) emitting layer, a hole-transporting nickel oxide (NiO) layer and/or an electron-transporting zinc oxide (ZnO) layer. Both the p-type NiO and n-type ZnO layers were formed by using sol-gel processes. All the fabricated CdSe/ZnS QLEDs showed similar electroluminescence spectra that originated from the green CdSe/ZnS QDs. However, different combinations of hole- and electron-transporting layers resulted in efficiency variations. In addition to the control of the respective concentrations of holes and electrons within a multilayer device structure, which determines the luminance and efficiency of QLEDs, the use of metal oxide layers is advantageous for long-term stability of QLEDs because they are air stable and can block the permeation of water vapor and oxygen in ambient air to a QD emitting layer. Moreover, the wet chemistry processing for their formation makes metal oxide layers attractive for low cost and/or large area manufacture of QLEDs.
我们制备并表征了量子点发光器件(QLEDs),其由 CdSe/ZnS 量子点(QD)发射层、空穴传输镍氧化物(NiO)层和/或电子传输氧化锌(ZnO)层组成。p 型 NiO 和 n 型 ZnO 层均通过溶胶-凝胶工艺形成。所有制备的 CdSe/ZnS QLED 均显示出源自绿色 CdSe/ZnS QD 的相似电致发光光谱。然而,空穴和电子传输层的不同组合导致效率变化。除了控制多层器件结构内的空穴和电子的各自浓度(其决定 QLED 的亮度和效率)之外,金属氧化物层的使用有利于 QLED 的长期稳定性,因为它们是空气稳定的并且可以阻挡水蒸气和氧气在环境空气中向 QD 发射层的渗透。此外,用于形成金属氧化物层的湿化学处理使其成为具有吸引力的低成本和/或大面积制造 QLED 的方法。