文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

A review of molybdenum disulfide (MoS) based photodetectors: from ultra-broadband, self-powered to flexible devices.

作者信息

Nalwa Hari Singh

机构信息

Advanced Technology Research 26650 The Old Road Valencia California 91381 USA

出版信息

RSC Adv. 2020 Aug 19;10(51):30529-30602. doi: 10.1039/d0ra03183f. eCollection 2020 Aug 17.


DOI:10.1039/d0ra03183f
PMID:35516069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9056353/
Abstract

Two-dimensional transition metal dichalcogenides (2D TMDs) have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures (vdWHs) with other materials. Molybdenum disulfide (MoS) atomic layers which exhibit high carrier mobility and optical transparency are very suitable for developing ultra-broadband photodetectors to be used from surveillance and healthcare to optical communication. This review provides a brief introduction to TMD-based photodetectors, exclusively focused on MoS-based photodetectors. The current research advances show that the photoresponse of atomic layered MoS can be significantly improved by boosting its charge carrier mobility and incident light absorption forming MoS based plasmonic nanostructures, halide perovskites-MoS heterostructures, 2D-0D MoS/quantum dots (QDs) and 2D-2D MoS hybrid vdWHs, chemical doping, and surface functionalization of MoS atomic layers. By utilizing these different integration strategies, MoS hybrid heterostructure-based photodetectors exhibited remarkably high photoresponsivity raging from mA W up to 10 A W, detectivity from 10 to 10 Jones and a photoresponse time from seconds (s) to nanoseconds (10 s), varying by several orders of magnitude from deep-ultraviolet (DUV) to the long-wavelength infrared (LWIR) region. The flexible photodetectors developed from MoS-based hybrid heterostructures with graphene, carbon nanotubes (CNTs), TMDs, and ZnO are also discussed. In addition, strain-induced and self-powered MoS based photodetectors have also been summarized. The factors affecting the figure of merit of a very wide range of MoS-based photodetectors have been analyzed in terms of their photoresponsivity, detectivity, response speed, and quantum efficiency along with their measurement wavelengths and incident laser power densities. Conclusions and the future direction are also outlined on the development of MoS and other 2D TMD-based photodetectors.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/4ab815a694e8/d0ra03183f-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/abaf65dea0e6/d0ra03183f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/2766b8cd5529/d0ra03183f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/35a852986423/d0ra03183f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/8e3d7089ee34/d0ra03183f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/ae6f97a41333/d0ra03183f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/d28750ea70fa/d0ra03183f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/ccc6447a71ea/d0ra03183f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/d271df821d27/d0ra03183f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/6152c265ed53/d0ra03183f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/886bd38d6634/d0ra03183f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/d62f2841d795/d0ra03183f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/447c47dc28f4/d0ra03183f-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/f5c62d7abe6c/d0ra03183f-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/7a2419494cb7/d0ra03183f-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/697a6401e0cb/d0ra03183f-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/596365186c57/d0ra03183f-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/826f03abe7a7/d0ra03183f-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/f451abe84d1f/d0ra03183f-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/60b2c51fd76e/d0ra03183f-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/7174efb111a8/d0ra03183f-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/7964568f4aed/d0ra03183f-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/cea9bd931ce8/d0ra03183f-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/423b5caa1a62/d0ra03183f-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/8ff89f3f2ae6/d0ra03183f-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/8e93675ef979/d0ra03183f-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/18f4c13700e9/d0ra03183f-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/4cd08c7ca275/d0ra03183f-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/48d2893912a0/d0ra03183f-f28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/1a3b6cf83395/d0ra03183f-f29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/4ab815a694e8/d0ra03183f-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/abaf65dea0e6/d0ra03183f-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/2766b8cd5529/d0ra03183f-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/35a852986423/d0ra03183f-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/8e3d7089ee34/d0ra03183f-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/ae6f97a41333/d0ra03183f-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/d28750ea70fa/d0ra03183f-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/ccc6447a71ea/d0ra03183f-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/d271df821d27/d0ra03183f-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/6152c265ed53/d0ra03183f-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/886bd38d6634/d0ra03183f-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/d62f2841d795/d0ra03183f-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/447c47dc28f4/d0ra03183f-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/f5c62d7abe6c/d0ra03183f-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/7a2419494cb7/d0ra03183f-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/697a6401e0cb/d0ra03183f-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/596365186c57/d0ra03183f-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/826f03abe7a7/d0ra03183f-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/f451abe84d1f/d0ra03183f-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/60b2c51fd76e/d0ra03183f-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/7174efb111a8/d0ra03183f-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/7964568f4aed/d0ra03183f-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/cea9bd931ce8/d0ra03183f-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/423b5caa1a62/d0ra03183f-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/8ff89f3f2ae6/d0ra03183f-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/8e93675ef979/d0ra03183f-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/18f4c13700e9/d0ra03183f-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/4cd08c7ca275/d0ra03183f-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/48d2893912a0/d0ra03183f-f28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/1a3b6cf83395/d0ra03183f-f29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7634/9056353/4ab815a694e8/d0ra03183f-p1.jpg

相似文献

[1]
A review of molybdenum disulfide (MoS) based photodetectors: from ultra-broadband, self-powered to flexible devices.

RSC Adv. 2020-8-19

[2]
MoS Based Photodetectors: A Review.

Sensors (Basel). 2021-4-14

[3]
Photophysical Dynamics in Semiconducting Graphene Quantum Dots Integrated with 2D MoS for Optical Enhancement in the Near UV.

ACS Appl Mater Interfaces. 2021-2-3

[4]
All-Inorganic Perovskite Quantum Dot-Monolayer MoS Mixed-Dimensional van der Waals Heterostructure for Ultrasensitive Photodetector.

Adv Sci (Weinh). 2018-9-21

[5]
High-Performance Broadband Photodetector Based on Monolayer MoS Hybridized with Environment-Friendly CuInSe Quantum Dots.

ACS Appl Mater Interfaces. 2020-12-9

[6]
Ultrasensitive Hybrid MoS-ZnCdSe Quantum Dot Photodetectors with High Gain.

ACS Appl Mater Interfaces. 2019-7-3

[7]
Boosting Two-Dimensional MoS/CsPbBr Photodetectors via Enhanced Light Absorbance and Interfacial Carrier Separation.

ACS Appl Mater Interfaces. 2018-1-9

[8]
Printable Transfer-Free and Wafer-Size MoS/Graphene van der Waals Heterostructures for High-Performance Photodetection.

ACS Appl Mater Interfaces. 2017-3-30

[9]
Flexible Molybdenum Disulfide (MoS) Atomic Layers for Wearable Electronics and Optoelectronics.

ACS Appl Mater Interfaces. 2019-3-18

[10]
Photogating Effect of Atomically Thin Graphene/MoS/MoTe van der Waals Heterostructures.

Micromachines (Basel). 2023-1-4

引用本文的文献

[1]
Electron Cloaking in MoS for High-Performance Optoelectronics.

Nano Lett. 2025-6-11

[2]
Photoelectric Performance of Two-Dimensional n-MoS Nanosheets/p-Heavily Boron-Doped Diamond Heterojunction at High Temperature.

Int J Mol Sci. 2025-5-9

[3]
Epitaxial Mixed-Dimensional MoS Nanofin-Nanoribbon Hybrids and Their Integration into Electronic and Optoelectronic Devices.

ACS Appl Mater Interfaces. 2025-5-14

[4]
Highly Selective Room-Temperature Blue LED-Enhanced NO Gas Sensors Based on ZnO-MoS-TiO Heterostructures.

Sensors (Basel). 2025-3-13

[5]
Zinc Oxide/Molybdenum Disulfide as Nanocomposite for Multifunctional Sensor Prototype.

Micromachines (Basel). 2025-3-21

[6]
Emerging Multifunctional Carbon-Nanomaterial-Based Biosensors for Cancer Diagnosis.

Small Sci. 2024-1-22

[7]
Chemical Vapor Deposition Mediated Phase Engineering for 2D Transition Metal Dichalcogenides: Strategies and Applications.

Small Sci. 2021-10-19

[8]
Effect of molecular adsorption on the conductivity of selectively grown, interconnected 2D-MoS atomically thin flake structures.

Nanoscale Adv. 2025-2-24

[9]
MoS-Plasmonic Hybrid Platforms: Next-Generation Tools for Biological Applications.

Nanomaterials (Basel). 2025-1-13

[10]
Layer-dependent Schottky contact at TaX-BY (X = S, Se, Te; Y = P, As, Sb) van der Waals interfaces.

Nanoscale Adv. 2024-11-27

本文引用的文献

[1]
Enhanced NO gas sensing of a single-layer MoS by photogating and piezo-phototronic effects.

Sci Bull (Beijing). 2019-1-30

[2]
Infrared tunable, two colour-band photodetectors on flexible platforms using 0D/2D PbS-MoS hybrids.

Nanoscale Adv. 2019-7-10

[3]
A hydrothermally synthesized MoSSe alloy with deep-shallow level conversion for enhanced performance of photodetectors.

Nanoscale Adv. 2020-4-6

[4]
Self-powered, high response and fast response speed metal-insulator-semiconductor structured photodetector based on 2D MoS.

RSC Adv. 2018-8-6

[5]
Highly efficient and flexible photodetector based on MoS-ZnO heterostructures.

RSC Adv. 2019-6-25

[6]
A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors.

RSC Adv. 2019-3-18

[7]
Ferroelectric performance of nylons 6-12, 10-12, 11-12, and 12-12.

RSC Adv. 2020-4-21

[8]
Spatially Bandgap-Graded MoSSe Homojunctions for Self-Powered Visible-Near-Infrared Phototransistors.

Nanomicro Lett. 2020-1-18

[9]
Regulation of Autophagy Orchestrates Pyroptotic Cell Death in Molybdenum Disulfide Quantum Dot-Induced Microglial Toxicity.

ACS Biomater Sci Eng. 2020-3-9

[10]
Ultrasensitive Phototransistor Based on WSe-MoS van der Waals Heterojunction.

Nano Lett. 2020-8-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索