Suciu Liana, Ardelean Sebastian Mihai, Udrescu Mihai, Goldiş Florina-Diana, Hânda Daiana, Tuică Maria-Medana, Vasii Sabina-Oana, Udrescu Lucreţia
Department II-Pharmacology, Pharmacotherapy, "Victor Babeş" University of Medicine and Pharmacy Timişoara, 300041 Timişoara, Romania.
Research Center for Pharmaco-Toxicological Evaluations, "Victor Babeş" University of Medicine and Pharmacy Timişoara, 300041 Timişoara, Romania.
Pharmaceutics. 2024 Feb 28;16(3):339. doi: 10.3390/pharmaceutics16030339.
Drug-drug interactions (DDIs) can either enhance or diminish the positive or negative effects of the associated drugs. Multiple drug combinations create difficulties in identifying clinically relevant drug interactions; this is why electronic drug interaction checkers frequently report DDI results inconsistently. Our paper aims to analyze drug interactions in cardiovascular diseases by selecting drugs from pharmacotherapeutic subcategories of interest according to Level 2 of the Anatomical Therapeutic Chemical (ATC) classification system. We checked DDIs between 9316 pairs of cardiovascular drugs and 25,893 pairs of cardiovascular and other drugs. We then evaluated the overall agreement on DDI severity results between two electronic drug interaction checkers. Thus, we obtained a for the DDIs between drugs in the cardiovascular category, as well as for the DDIs between drugs in the cardiovascular and other (i.e., non-cardiovascular) categories, as reflected by the Fleiss' kappa coefficients of κ=0.3363 and κ=0.3572, respectively. The categorical analysis of agreement between ATC-defined subcategories reveals Fleiss' kappa coefficients that indicate levels of agreement varying from (κ<0) to (κ=1). The main drawback of the overall agreement assessment is that it includes DDIs between drugs in the same subcategory, a situation of therapeutic duplication seldom encountered in clinical practice. Our main conclusion is that the categorical analysis of the agreement on DDI is more insightful than the overall approach, as it allows a more thorough investigation of the disparities between DDI databases and better exposes the factors that influence the different responses of electronic drug interaction checkers. Using categorical analysis avoids potential inaccuracies caused by particularizing the results of an overall statistical analysis in a heterogeneous dataset.
药物相互作用(DDIs)既可以增强也可以减弱相关药物的正面或负面影响。多种药物组合给识别临床相关的药物相互作用带来了困难;这就是为什么电子药物相互作用检查器经常不一致地报告DDI结果。我们的论文旨在通过根据解剖治疗化学(ATC)分类系统的第2级从感兴趣的药物治疗亚类中选择药物,来分析心血管疾病中的药物相互作用。我们检查了9316对心血管药物之间以及25893对心血管药物与其他药物之间的药物相互作用。然后,我们评估了两个电子药物相互作用检查器之间关于DDI严重程度结果的总体一致性。因此,我们分别得到了心血管类药物之间以及心血管类药物与其他(即非心血管)类药物之间药物相互作用的Fleiss卡方系数,分别为κ = 0.3363和κ = 0.3572。对ATC定义的亚类之间一致性的分类分析揭示了Fleiss卡方系数,其表明一致性水平从(κ < 0)到(κ = 1)不等。总体一致性评估的主要缺点是它包括同一亚类中药物之间的药物相互作用,这是临床实践中很少遇到的治疗重复情况。我们的主要结论是,对药物相互作用一致性的分类分析比总体方法更具洞察力,因为它允许更深入地研究药物相互作用数据库之间的差异,并更好地揭示影响电子药物相互作用检查器不同反应的因素。使用分类分析可避免在异质数据集中将总体统计分析结果特殊化所导致的潜在不准确。