Suppr超能文献

提高药物相互作用警报的特异性:这可行吗?

Improving the specificity of drug-drug interaction alerts: Can it be done?

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.

Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Am J Health Syst Pharm. 2022 Jun 23;79(13):1086-1095. doi: 10.1093/ajhp/zxac045.

Abstract

PURPOSE

Inaccurate and nonspecific medication alerts contribute to high override rates, alert fatigue, and ultimately patient harm. Drug-drug interaction (DDI) alerts often fail to account for factors that could reduce risk; further, drugs that trigger alerts are often inconsistently grouped into value sets. Toward improving the specificity of DDI alerts, the objectives of this study were to (1) highlight the inconsistency of drug value sets for triggering DDI alerts and (2) demonstrate a method of classifying factors that can be used to modify the risk of harm from a DDI.

METHODS

This was a proof-of-concept study focused on 15 well-known DDIs. Using 3 drug interaction references, we extracted 2 drug value sets and any available order- and patient-related factors for each DDI. Fleiss' kappa was used to measure the consistency of value sets among references. Risk-modifying factors were classified as order parameters (eg, route and dose) or patient characteristics (eg, comorbidities and laboratory results).

RESULTS

Seventeen value sets (56%) had nonsignificant agreement. Agreement among the remaining 13 value sets was on average moderate. Thirty-three factors that could reduce risk in 14 of 15 DDIs (93%) were identified. Most risk-modifying factors (67%) were classified as order parameters.

CONCLUSION

This study demonstrates the importance of increasing the consistency of drug value sets that trigger DDI alerts and how alert specificity and usefulness can be improved with risk-modifying factors obtained from drug references. It may be difficult to operationalize certain factors to reduce unnecessary alerts; however, factors can be used to support decisions by providing contextual information.

摘要

目的

不准确和非特异性的药物警示会导致高覆盖率、警示疲劳,最终导致患者受到伤害。药物-药物相互作用(DDI)警示往往没有考虑到可能降低风险的因素;此外,触发警示的药物通常不一致地分组到价值集中。为了提高 DDI 警示的特异性,本研究的目的是(1)强调触发 DDI 警示的药物价值集的不一致性,(2)展示一种可用于修改 DDI 危害风险的因素分类方法。

方法

这是一项概念验证研究,专注于 15 种已知的 DDI。使用 3 种药物相互作用参考资料,我们提取了 2 种药物价值集和每种 DDI 的任何可用的医嘱和患者相关因素。Fleiss' kappa 用于衡量参考资料中价值集的一致性。风险修正因素被分类为医嘱参数(例如,途径和剂量)或患者特征(例如,合并症和实验室结果)。

结果

17 个价值集(56%)具有无显著一致性。其余 13 个价值集的一致性平均为中度。在 15 个 DDI 中的 14 个(93%)确定了 33 个可以降低风险的因素。大多数风险修正因素(67%)被分类为医嘱参数。

结论

本研究表明了增加触发 DDI 警示的药物价值集的一致性的重要性,以及如何通过从药物参考资料中获得的风险修正因素来提高警示的特异性和有用性。将某些因素付诸实施以减少不必要的警示可能很困难;然而,这些因素可以通过提供上下文信息来支持决策。

相似文献

4

引用本文的文献

本文引用的文献

1
Designing and evaluating contextualized drug-drug interaction algorithms.设计和评估情境化药物相互作用算法。
JAMIA Open. 2021 Mar 19;4(1):ooab023. doi: 10.1093/jamiaopen/ooab023. eCollection 2021 Jan.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验