Suppr超能文献

通过用葡萄糖酸钠进行生物刺激增强MSC14对苯并[a]芘的降解:对机制和分子调控的见解

Enhancing Benzo[a]pyrene Degradation by MSC14 through Biostimulation with Sodium Gluconate: Insights into Mechanisms and Molecular Regulation.

作者信息

Lai La, Li Shuqi, Zhang Shaoping, Liu Manchun, Xia Lianwei, Ren Yuan, Cui Tangbing

机构信息

School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.

School of Food and Pharmaccutical Engineering, Zhaoqing University, Zhaoqing 526000, China.

出版信息

Microorganisms. 2024 Mar 15;12(3):592. doi: 10.3390/microorganisms12030592.

Abstract

We investigated biostimulation as an effective strategy for enhancing the degradation efficiency of recalcitrant organic compounds, with MSC14 (a novel polycyclic aromatic hydrocarbon degrading bacterium MSC14) as the study material. Here, we investigated the impact of sodium gluconate on MSC14-mediated degradation of B[a]p. This study focused on the application of sodium gluconate, a biostimulant, on MSC14, targeting Benzo[a]pyrene (B[a]p) as the model pollutant. In this study, the novel PAHs-degrading bacterium MSC14 demonstrated the capability to degrade 24.41% of B[a]p after 4 days. The addition of the selected sodium gluconate stimulant at a concentration of 4 g/L stimulated MSC14 to degrade 54.85% of B[a]p after 16 h. Intermediate metabolites were analyzed using gas chromatography-mass spectrometry to infer the degradation pathway. The findings indicated that sodium gluconate promoted the intracellular transport of B[a]p by MSC14, along with the secretion of biosurfactants, enhancing emulsification and solubilization capabilities for improved B[a]p dissolution and degradation. Further analysis through transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the formation of a biofilm by MSC14 and an increase in flagella as a response to B[a]p stress. Transcriptome profiling elucidated the interplay of quorum sensing systems, chemotaxis systems, and flagellar systems in the degradation mechanism. Additionally, the study uncovered the molecular basis of B[a]p transport, degradation pathways, metabolic changes, and genetic regulation. In summary, the addition of sodium gluconate promotes the degradation of B[a]p by MSC14, offering the advantages of being rapid, efficient, and cost-effective. This research provides an economically viable approach for the remediation of petroleum hydrocarbon pollution, with broad potential applications.

摘要

我们以MSC14(一种新型多环芳烃降解细菌MSC14)为研究材料,研究了生物刺激作为提高难降解有机化合物降解效率的有效策略。在此,我们研究了葡萄糖酸钠对MSC14介导的苯并[a]芘降解的影响。本研究聚焦于生物刺激剂葡萄糖酸钠在MSC14上的应用,以苯并[a]芘(B[a]p)作为模型污染物。在本研究中,新型多环芳烃降解细菌MSC14在4天后能够降解24.41%的苯并[a]芘。添加浓度为4 g/L的选定葡萄糖酸钠刺激剂后,MSC14在16小时内降解了54.85%的苯并[a]芘。使用气相色谱 - 质谱联用仪分析中间代谢产物以推断降解途径。研究结果表明,葡萄糖酸钠促进了MSC14对苯并[a]芘的细胞内转运,同时促进了生物表面活性剂的分泌,增强了乳化和增溶能力,从而改善了苯并[a]芘的溶解和降解。通过透射电子显微镜(TEM)和扫描电子显微镜(SEM)的进一步分析表明,MSC14形成了生物膜,并且鞭毛数量增加以响应苯并[a]芘胁迫。转录组分析阐明了群体感应系统、趋化系统和鞭毛系统在降解机制中的相互作用。此外,该研究揭示了苯并[a]芘转运、降解途径、代谢变化和基因调控的分子基础。总之,添加葡萄糖酸钠促进了MSC14对苯并[a]芘的降解,具有快速、高效和经济高效的优点。本研究为石油烃污染修复提供了一种经济可行的方法,具有广泛的潜在应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f7/10975679/263ade1c9488/microorganisms-12-00592-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验