Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China.
Catalan Institute for Water Research (ICRA), 17003, Girona, Spain.
ISME J. 2023 Jul;17(7):1004-1014. doi: 10.1038/s41396-023-01408-x. Epub 2023 Apr 17.
The earthworm gut virome influences the structure and function of the gut microbiome, which in turn influences worm health and ecological functions. However, despite its ecological and soil quality implications, it remains elusive how earthworm intestinal phages respond to different environmental stress, such as soil pollution. Here we used metagenomics and metatranscriptomics to investigate interactions between the worm intestinal phages and their bacteria under different benzo[a]pyrene (BaP) concentrations. Low-level BaP (0.1 mg kg) stress stimulated microbial metabolism (1.74-fold to control), and enhanced the antiphage defense system (n = 75) against infection (8 phage-host pairs). Low-level BaP exposure resulted in the highest proportion of lysogenic phages (88%), and prophages expressed auxiliary metabolic genes (AMGs) associated with nutrient transformation (e.g., amino acid metabolism). In contrast, high-level BaP exposure (200 mg kg) disrupted microbial metabolism and suppressed the antiphage systems (n = 29), leading to the increase in phage-bacterium association (37 phage-host pairs) and conversion of lysogenic to lytic phages (lysogenic ratio declined to 43%). Despite fluctuating phage-bacterium interactions, phage-encoded AMGs related to microbial antioxidant and pollutant degradation were enriched, apparently to alleviate pollution stress. Overall, these findings expand our knowledge of complex phage-bacterium interactions in pollution-stressed worm guts, and deepen our understanding of the ecological and evolutionary roles of phages.
蚯蚓肠道病毒群影响肠道微生物群的结构和功能,而肠道微生物群又反过来影响蚯蚓的健康和生态功能。然而,尽管其对生态和土壤质量有影响,但仍然难以确定蚯蚓肠道噬菌体如何应对不同的环境压力,如土壤污染。在这里,我们使用宏基因组学和宏转录组学来研究不同苯并[a]芘(BaP)浓度下蚯蚓肠道噬菌体与其细菌之间的相互作用。低水平的 BaP(0.1mg/kg)胁迫刺激了微生物代谢(是对照的 1.74 倍),并增强了抗噬菌体防御系统(n=75)以抵抗感染(8 个噬菌体-宿主对)。低水平的 BaP 暴露导致溶原噬菌体的比例最高(88%),并且原噬菌体表达了与营养转化(例如,氨基酸代谢)相关的辅助代谢基因(AMGs)。相比之下,高水平的 BaP 暴露(200mg/kg)破坏了微生物代谢并抑制了抗噬菌体系统(n=29),导致噬菌体-细菌的关联增加(37 个噬菌体-宿主对)和溶原噬菌体向裂解噬菌体的转化(溶原率下降到 43%)。尽管噬菌体-细菌的相互作用波动不定,但噬菌体编码的与微生物抗氧化和污染物降解相关的 AMGs 被富集,显然是为了缓解污染压力。总的来说,这些发现扩展了我们对污染胁迫蚯蚓肠道中复杂噬菌体-细菌相互作用的认识,并加深了我们对噬菌体的生态和进化作用的理解。