Zhang Lei, Zheng Jiachun, Li Chaopeng, Xu Zhiping, Yang Jiawen, Wei Qiuxin, Wu Xinyi
School of Ocean Information Engineering, Jimei University, Xiamen 361021, China.
Fujlan Electronic Port Co., Ltd., Xiamen 361000, China.
Sensors (Basel). 2024 Mar 11;24(6):1793. doi: 10.3390/s24061793.
The effectiveness of the SAR object detection technique based on Convolutional Neural Networks (CNNs) has been widely proven, and it is increasingly used in the recognition of ship targets. Recently, efforts have been made to integrate transformer structures into SAR detectors to achieve improved target localization. However, existing methods rarely design the transformer itself as a detector, failing to fully leverage the long-range modeling advantages of self-attention. Furthermore, there has been limited research into multi-class SAR target detection. To address these limitations, this study proposes a SAR detector named CCDN-DETR, which builds upon the framework of the detection transformer (DETR). To adapt to the multiscale characteristics of SAR data, cross-scale encoders were introduced to facilitate comprehensive information modeling and fusion across different scales. Simultaneously, we optimized the query selection scheme for the input decoder layers, employing IOU loss to assist in initializing object queries more effectively. Additionally, we introduced constrained contrastive denoising training at the decoder layers to enhance the model's convergence speed and improve the detection of different categories of SAR targets. In the benchmark evaluation on a joint dataset composed of SSDD, HRSID, and SAR-AIRcraft datasets, CCDN-DETR achieves a mean Average Precision (mAP) of 91.9%. Furthermore, it demonstrates significant competitiveness with 83.7% mAP on the multi-class MSAR dataset compared to CNN-based models.
基于卷积神经网络(CNN)的合成孔径雷达(SAR)目标检测技术的有效性已得到广泛验证,并且越来越多地应用于舰船目标识别。最近,人们致力于将变压器结构集成到SAR探测器中,以实现更好的目标定位。然而,现有方法很少将变压器本身设计为探测器,未能充分利用自注意力的长距离建模优势。此外,对多类SAR目标检测的研究也很有限。为了解决这些局限性,本研究提出了一种名为CCDN-DETR的SAR探测器,它基于检测变压器(DETR)的框架构建。为了适应SAR数据的多尺度特征,引入了跨尺度编码器,以促进不同尺度间的综合信息建模和融合。同时,我们优化了输入解码器层的查询选择方案,采用交并比损失来更有效地辅助初始化目标查询。此外,我们在解码器层引入了约束对比去噪训练,以提高模型的收敛速度,并改善对不同类别的SAR目标的检测。在由SSDD、HRSID和SAR-Aircraft数据集组成的联合数据集上的基准评估中,CCDN-DETR的平均精度均值(mAP)达到了91.9%。此外,与基于CNN的模型相比,它在多类MSAR数据集上的mAP为83.7%,显示出显著的竞争力。