Laboratoire de Génie Électrique et Électronique de Paris, CNRS, Centrale Supélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France.
CIAMS, Université Paris-Saclay, 91405 Orsay, France.
Sensors (Basel). 2024 Mar 15;24(6):1885. doi: 10.3390/s24061885.
Parkinson's disease is one of the major neurodegenerative diseases that affects the postural stability of patients, especially during gait initiation. There is actually an increasing demand for the development of new non-pharmacological tools that can easily classify healthy/affected patients as well as the degree of evolution of the disease. The experimental characterization of gait initiation (GI) is usually done through the simultaneous acquisition of about 20 variables, resulting in very large datasets. Dimension reduction tools are therefore suitable, considering the complexity of the physiological processes involved. The principal Component Analysis (PCA) is very powerful at reducing the dimensionality of large datasets and emphasizing correlations between variables. In this paper, the Principal Component Analysis (PCA) was enhanced with bootstrapping and applied to the study of the GI to identify the 3 majors sets of variables influencing the postural control disability of Parkinsonian patients during GI. We show that the combination of these methods can lead to a significant improvement in the unsupervised classification of healthy/affected patients using a Gaussian mixture model, since it leads to a reduced confidence interval on the estimated parameters. The benefits of this method for the identification and study of the efficiency of potential treatments is not addressed in this paper but could be addressed in future works.
帕金森病是一种主要的神经退行性疾病,它会影响患者的姿势稳定性,尤其是在步态启动时。实际上,人们越来越需要开发新的非药物工具,以便能够轻松地对健康/患病患者以及疾病的发展程度进行分类。步态启动(GI)的实验特征通常是通过同时采集大约 20 个变量来完成的,这会导致非常大的数据集。因此,考虑到所涉及的生理过程的复杂性,降维工具是合适的。主成分分析(PCA)非常强大,可以降低大数据集的维度,并强调变量之间的相关性。在本文中,我们使用 bootstrap 增强了主成分分析(PCA),并将其应用于 GI 的研究中,以确定影响帕金森病患者在 GI 期间姿势控制障碍的 3 个主要变量组。我们表明,这些方法的结合可以通过使用高斯混合模型对健康/患病患者进行无监督分类,从而显著提高分类效果,因为这会导致对估计参数的置信区间减小。本文没有讨论这种方法对识别和研究潜在治疗方法的效率的好处,但可以在未来的工作中讨论。