Suppr超能文献

基于多无人机成像和深度学习的水果智能检测集成系统。

Intelligent Integrated System for Fruit Detection Using Multi-UAV Imaging and Deep Learning.

机构信息

Faculty of Information Technologies, Khmelnytskyi National University, 11, Instytuts'ka Str., 29016 Khmelnytskyi, Ukraine.

Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Craków, Poland.

出版信息

Sensors (Basel). 2024 Mar 16;24(6):1913. doi: 10.3390/s24061913.

Abstract

In the context of Industry 4.0, one of the most significant challenges is enhancing efficiency in sectors like agriculture by using intelligent sensors and advanced computing. Specifically, the task of fruit detection and counting in orchards represents a complex issue that is crucial for efficient orchard management and harvest preparation. Traditional techniques often fail to provide the timely and precise data necessary for these tasks. With the agricultural sector increasingly relying on technological advancements, the integration of innovative solutions is essential. This study presents a novel approach that combines artificial intelligence (AI), deep learning (DL), and unmanned aerial vehicles (UAVs). The proposed approach demonstrates superior real-time capabilities in fruit detection and counting, utilizing a combination of AI techniques and multi-UAV systems. The core innovation of this approach is its ability to simultaneously capture and synchronize video frames from multiple UAV cameras, converting them into a cohesive data structure and, ultimately, a continuous image. This integration is further enhanced by image quality optimization techniques, ensuring the high-resolution and accurate detection of targeted objects during UAV operations. Its effectiveness is proven by experiments, achieving a high mean average precision rate of 86.8% in fruit detection and counting, which surpasses existing technologies. Additionally, it maintains low average error rates, with a false positive rate at 14.7% and a false negative rate at 18.3%, even under challenging weather conditions like cloudiness. Overall, the practical implications of this multi-UAV imaging and DL-based approach are vast, particularly for real-time fruit recognition in orchards, marking a significant stride forward in the realm of digital agriculture that aligns with the objectives of Industry 4.0.

摘要

在工业 4.0 的背景下,通过使用智能传感器和先进的计算技术来提高农业等领域的效率是一个重大挑战。具体来说,果园中水果的检测和计数任务是一个复杂的问题,对高效的果园管理和收获准备至关重要。传统技术往往无法提供这些任务所需的及时和精确的数据。随着农业领域越来越依赖技术进步,整合创新解决方案至关重要。本研究提出了一种结合人工智能 (AI)、深度学习 (DL) 和无人机 (UAV) 的新方法。该方法在水果检测和计数方面具有卓越的实时能力,利用 AI 技术和多无人机系统的组合。该方法的核心创新在于其能够同时捕获和同步来自多个无人机摄像机的视频帧,将它们转换为一个连贯的数据结构,最终转换为连续的图像。通过图像质量优化技术进一步增强了这种集成,确保了在无人机操作过程中对目标对象进行高分辨率和准确检测。实验证明了其有效性,在水果检测和计数方面实现了 86.8%的高平均精度率,超过了现有技术。此外,即使在多云等挑战性天气条件下,它也能保持低平均误差率,假阳性率为 14.7%,假阴性率为 18.3%。总体而言,这种多无人机成像和基于 DL 的方法具有广泛的实际意义,特别是在果园中的实时水果识别方面,标志着数字农业领域向前迈出了重要一步,符合工业 4.0 的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/126a/10975253/ee33048d9a6a/sensors-24-01913-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验