Suppr超能文献

基于深度学习的果蝇自动化检测:在基于无人机监测中的应用潜力。

Deep learning for automated detection of Drosophila suzukii: potential for UAV-based monitoring.

机构信息

Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, The Netherlands.

UAV/UAS Centre for Environmental Monitoring and Mapping, University of Aberdeen, Aberdeen, UK.

出版信息

Pest Manag Sci. 2020 Sep;76(9):2994-3002. doi: 10.1002/ps.5845. Epub 2020 Apr 20.

Abstract

BACKGROUND

The fruit fly Drosophila suzukii, or spotted wing drosophila (SWD), is a serious pest worldwide, attacking many soft-skinned fruits. An efficient monitoring system that identifies and counts SWD in crops and their surroundings is therefore essential for integrated pest management (IPM) strategies. Existing methods, such as catching flies in liquid bait traps and counting them manually, are costly, time-consuming and labour-intensive. To overcome these limitations, we studied insect trap monitoring using image-based object detection with deep learning.

RESULTS

Based on an image database with 4753 annotated SWD flies, we trained a ResNet-18-based deep convolutional neural network to detect and count SWD, including sex prediction and discrimination. The results show that SWD can be detected with an area under the precision recall curve (AUC) of 0.506 (female) and 0.603 (male) in digital images taken from a static position. For images collected using an unmanned aerial vehicle (UAV), the algorithm detected SWD individuals with an AUC of 0.086 (female) and 0.284 (male). The lower AUC for the aerial imagery was due to lower image quality caused by stabilisation manoeuvres of the UAV during image collection.

CONCLUSION

Our results indicate that it is possible to monitor SWD using deep learning and object detection. Moreover, the results demonstrate the potential of UAVs to monitor insect traps, which could be valuable in the development of autonomous insect monitoring systems and IPM. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

摘要

背景

水果果蝇 Drosophila suzukii,又称斑翅果蝇(SWD),是一种世界性的严重害虫,攻击许多软皮水果。因此,对于病虫害综合治理(IPM)策略来说,一种能够识别和计数作物及其周围 SWD 的高效监测系统是必不可少的。现有的方法,如在液体诱饵陷阱中捕捉苍蝇并手动计数,既昂贵又耗时且劳动强度大。为了克服这些限制,我们研究了基于图像的目标检测的昆虫诱捕监测,该方法利用深度学习。

结果

基于一个包含 4753 只标注 SWD 蝇的图像数据库,我们训练了一个基于 ResNet-18 的深度卷积神经网络,用于检测和计数 SWD,包括性别预测和区分。结果表明,在从静态位置拍摄的数字图像中,可以用面积下的精度召回曲线(AUC)检测到 SWD,雌性 AUC 为 0.506,雄性 AUC 为 0.603。对于使用无人驾驶飞行器(UAV)采集的图像,算法检测到 SWD 个体的 AUC 分别为雌性 0.086 和雄性 0.284。空中图像的 AUC 较低是由于 UAV 在图像采集过程中稳定操作导致的图像质量较低所致。

结论

我们的研究结果表明,利用深度学习和目标检测监测 SWD 是可行的。此外,研究结果表明 UAV 监测昆虫诱捕的潜力,这对于开发自主昆虫监测系统和 IPM 可能具有重要价值。 © 2020 作者。《害虫管理科学》由 John Wiley & Sons Ltd 代表化学工业协会出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/020d/7496713/874e29f8f813/PS-76-2994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验