Suppr超能文献

使用多个异构图形处理器对微型计算机断层扫描进行迭代重建

Iterative Reconstruction of Micro Computed Tomography Scans Using Multiple Heterogeneous GPUs.

作者信息

Chou Wen-Hsiang, Wu Cheng-Han, Jin Shih-Chun, Chen Jyh-Cheng

机构信息

Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.

Department of Psychiatry, Taichung Veterans General Hospital, Taichung 407219, Taiwan.

出版信息

Sensors (Basel). 2024 Mar 18;24(6):1947. doi: 10.3390/s24061947.

Abstract

Graphics processing units (GPUs) facilitate massive parallelism and high-capacity storage, and thus are suitable for the iterative reconstruction of ultrahigh-resolution micro computed tomography (CT) scans by on-the-fly system matrix (OTFSM) calculation using ordered subsets expectation maximization (OSEM). We propose a finite state automaton (FSA) method that facilitates iterative reconstruction using a heterogeneous multi-GPU platform through parallelizing the matrix calculations derived from a ray tracing system of ordered subsets. The FSAs perform flow control for parallel threading of the heterogeneous GPUs, which minimizes the latency of launching ordered-subsets tasks, reduces the data transfer between the main system memory and local GPU memory, and solves the memory-bound of a single GPU. In the experiments, we compared the operation efficiency of OS-MLTR for three reconstruction environments. The heterogeneous multiple GPUs with job queues for high throughput calculation speed is up to five times faster than the single GPU environment, and that speed up is nine times faster than the heterogeneous multiple GPUs with the FIFO queues of the device scheduling control. Eventually, we proposed an event-triggered FSA method for iterative reconstruction using multiple heterogeneous GPUs that solves the memory-bound issue of a single GPU at ultrahigh resolutions, and the routines of the proposed method were successfully executed on each GPU simultaneously.

摘要

图形处理单元(GPU)有助于实现大规模并行性和高容量存储,因此适用于通过使用有序子集期望最大化(OSEM)进行实时系统矩阵(OTFSM)计算来对超高分辨率微型计算机断层扫描(CT)进行迭代重建。我们提出了一种有限状态自动机(FSA)方法,该方法通过对有序子集的光线追踪系统导出的矩阵计算进行并行化,从而在异构多GPU平台上实现迭代重建。FSA对异构GPU的并行线程执行流控制,这最大限度地减少了启动有序子集任务的延迟,减少了主系统内存和本地GPU内存之间的数据传输,并解决了单个GPU的内存受限问题。在实验中,我们比较了三种重建环境下OS-MLTR的运行效率。具有用于高吞吐量计算速度的作业队列的异构多个GPU比单GPU环境快五倍,并且该加速比具有设备调度控制的FIFO队列的异构多个GPU快九倍。最终,我们提出了一种用于使用多个异构GPU进行迭代重建的事件触发FSA方法,该方法解决了超高分辨率下单个GPU的内存受限问题,并且所提出方法的例程在每个GPU上同时成功执行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验