Tendero Delicado Celia, Pérez Mónica Chillarón, Arnal García Josep, Vidal Gimeno Vicent, Blanco Pérez Esther
Department of Computer Systems and Computation, Universitat Politècnica de València, Valencia, Valencia, Spain.
Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain.
PLoS One. 2025 Jan 2;20(1):e0316354. doi: 10.1371/journal.pone.0316354. eCollection 2025.
During acquisition and reconstruction, medical images may become noisy and lose diagnostic quality. In the case of CT scans, obtaining less noisy images results in a higher radiation dose being administered to the patient. Filtering techniques can be utilized to reduce radiation without losing diagnosis capabilities. The objective in this work is to obtain an implementation of a filter capable of processing medical images in real-time. To achieve this we have developed several filter methods based on fuzzy logic, and their GPU implementations, to reduce mixed Gaussian-impulsive noise. These filters have been developed to work in attenuation coefficients so as to not lose any information from the CT scans. The testing volumes come from the Mayo clinic database and consist of CT volumes at full and at simulated low dose. The GPU parallelizations reach speedups of over 2700 and take less than 0.1 seconds to filter more than 300 slices. In terms of quality the filter is competitive with other state of the art algorithmic and AI filters. The proposed method obtains good performance in terms of quality and the parallelization results in real-time filtering.
在采集和重建过程中,医学图像可能会产生噪声并失去诊断质量。对于CT扫描而言,获取噪声较少的图像会导致患者接受更高的辐射剂量。可以利用滤波技术来减少辐射,同时不丧失诊断能力。这项工作的目标是实现一种能够实时处理医学图像的滤波器。为实现这一目标,我们基于模糊逻辑开发了几种滤波方法及其GPU实现,以减少混合高斯脉冲噪声。这些滤波器是为在衰减系数中工作而开发的,以便不会丢失CT扫描的任何信息。测试数据集来自梅奥诊所数据库,包括全剂量和模拟低剂量的CT数据集。GPU并行化实现了超过2700倍的加速,过滤300多个切片所需时间不到0.1秒。在质量方面,该滤波器与其他先进的算法和人工智能滤波器具有竞争力。所提出的方法在质量方面表现良好,并行化实现了实时滤波。