Suppr超能文献

急性A型主动脉夹层手术后患者长时间机械通气的列线图风险预测模型构建

Construction of a nomogram risk prediction model for prolonged mechanical ventilation in patients following surgery for acute type A aortic dissection.

作者信息

Yu Yun, Wang Yan, Deng Fang, Wang Zhigang, Shen Beibei, Zhang Ping, Wang Zheyun, Su Yunyan

机构信息

Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing, China.

出版信息

Front Cardiovasc Med. 2024 Mar 13;11:1335552. doi: 10.3389/fcvm.2024.1335552. eCollection 2024.

Abstract

BACKGROUND

This study aims to analyze the risk factors associated with prolonged mechanical ventilation (PMV) in patients following surgical treatment for acute type A aortic dissection (ATAAD). The objectives include constructing a predictive model for risk assessment and validating its predictive efficacy.

METHODS

A total of 452 patients diagnosed with ATAAD and undergoing surgical procedures at a tertiary hospital in Nanjing between January 2021 and April 2023 were selected using a convenience sampling method. Patients were categorized into two groups: PMV group ( = 132) and non-PMV group ( = 320) based on the occurrence of prolonged mechanical ventilation (PMV), and their clinical data were compared. The data were randomly divided into a modeling set and a validation set in a 7:3 ratio. Risk factors for PMV were identified in the modeling group using logistic regression analysis. A risk prediction model was constructed using R 4.1.3 software, visualized via a column chart. Receiver Operating Characteristic (ROC) curves were generated using the validation set to assess model differentiation. Calibration curves were plotted to evaluate accuracy and consistency, and Decision Curve Analysis (DCA) was applied to evaluate clinical utility.

RESULTS

The logistic regression analysis identified age, body mass index, preoperative white blood cell count, preoperative creatinine, preoperative cerebral hypoperfusion, and cardiopulmonary bypass time as significant risk factors for postoperative PMV in patients with ATAAD. The area under the curve (AUC) for the validation set ROC curve was 0.856, 95% confidence interval (0.805-0.907), indicating good discrimination. Calibration curves revealed strong alignment with the ideal curve, and the Hosmer-Lemeshow goodness-of-fit test indicated a well-fitted model ( = 0.892). The DCA curve demonstrated a high net benefit value, highlighting the model's strong clinical utility.

CONCLUSIONS

The risk prediction model developed in this study for PMV in patients undergoing surgery for ATAAD exhibits robust predictive performance. It provides valuable insights for healthcare practitioners in predicting the likelihood of PMV and devising timely and personalized intervention strategies.

摘要

背景

本研究旨在分析急性A型主动脉夹层(ATAAD)手术治疗患者发生机械通气时间延长(PMV)的相关危险因素。目标包括构建用于风险评估的预测模型并验证其预测效能。

方法

采用便利抽样法,选取2021年1月至2023年4月在南京某三级医院诊断为ATAAD并接受手术治疗的452例患者。根据机械通气时间延长(PMV)的发生情况将患者分为两组:PMV组(n = 132)和非PMV组(n = 320),比较两组患者的临床资料。数据按7:3的比例随机分为建模集和验证集。在建模组中采用逻辑回归分析确定PMV的危险因素。使用R 4.1.3软件构建风险预测模型,并通过柱状图进行可视化展示。使用验证集生成受试者工作特征(ROC)曲线以评估模型的区分能力。绘制校准曲线以评估准确性和一致性,并应用决策曲线分析(DCA)评估临床实用性。

结果

逻辑回归分析确定年龄、体重指数、术前白细胞计数、术前肌酐、术前脑灌注不足和体外循环时间是ATAAD患者术后发生PMV的显著危险因素。验证集ROC曲线的曲线下面积(AUC)为0.856,95%置信区间(0.805 - 0.907),表明区分能力良好。校准曲线显示与理想曲线高度吻合,Hosmer-Lemeshow拟合优度检验表明模型拟合良好(P = 0.892)。DCA曲线显示净效益值较高,突出了该模型较强的临床实用性。

结论

本研究建立的ATAAD手术患者PMV风险预测模型具有强大的预测性能。它为医护人员预测PMV的可能性以及制定及时且个性化的干预策略提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d2b/10966124/e51a96130ce6/fcvm-11-1335552-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验