Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.
Int J Stroke. 2024 Oct;19(8):898-906. doi: 10.1177/17474930241246156. Epub 2024 Apr 18.
Secondary prevention interventions to reduce post-stroke cognitive impairment (PSCI) can be aided by the early identification of high-risk individuals who would benefit from risk factor modification.
To develop and evaluate a predictive model to identify patients at increased risk of PSCI over 5 years using data easily accessible from electronic health records.
Cohort study that included primary care patients from two academic medical centers. Patients were aged 45 years or older, without prior stroke or prevalent cognitive impairment, with primary care visits and an incident ischemic stroke between 2003 and 2016 (development/internal validation cohort) or 2010 and 2022 (external validation cohort). Predictors of PSCI were ascertained from the electronic health record. The outcome was incident dementia/cognitive impairment within 5 years and beginning 3 months following stroke, ascertained using International Classification of Diseases, Ninth/Tenth Revision (ICD-9/10) codes. For model variable selection, we considered potential predictors of PSCI and constructed 400 bootstrap samples with two-thirds of the model derivation sample. We ran 10-fold cross-validated Cox proportional hazards models using a least absolute shrinkage and selection operator (LASSO) penalty. Variables selected in >25% of samples were included.
The analysis included 332 incident diagnoses of PSCI in the development cohort (n = 3741), and 161 and 128 incident diagnoses in the internal (n = 1925) and external (n = 2237) validation cohorts, respectively. The C-statistic for predicting PSCI was 0.731 (95% confidence interval (CI): 0.694-0.768) in the internal validation cohort, and 0.724 (95% CI: 0.681-0.766) in the external validation cohort. A risk score based on the beta coefficients of predictors from the development cohort stratified patients into low (0-7 points), intermediate (8-11 points), and high (12-23 points) risk groups. The hazard ratios (HRs) for incident PSCI were significantly different by risk categories in internal (high, HR: 6.2, 95% CI: 4.1-9.3; Intermediate, HR: 2.7, 95% CI: 1.8-4.1) and external (high, HR: 6.1, 95% CI: 3.9-9.6; Intermediate, HR: 2.8, 95% CI: 1.9-4.3) validation cohorts.
Five-year risk of PSCI can be accurately predicted using routinely collected data. Model output can be used to risk stratify and identify individuals at increased risk for PSCI for preventive efforts.
Mass General Brigham data contain protected health information and cannot be shared publicly. The data processing scripts used to perform analyses will be made available to interested researchers upon reasonable request to the corresponding author.
通过早期识别可能从危险因素修正中获益的高危个体,可辅助二级预防干预措施减少卒中后认知障碍(PSCI)。
开发并评估一种预测模型,使用电子病历中易于获取的数据,确定在 5 年内 PSCI 风险增加的患者。
该队列研究纳入了来自两个学术医疗中心的初级保健患者。患者年龄 45 岁或以上,无既往卒中或认知障碍病史,在 2003 年至 2016 年(开发/内部验证队列)或 2010 年至 2022 年(外部验证队列)期间存在初级保健就诊和缺血性卒中事件。从电子病历中确定 PSCI 的预测因子。结局是 5 年内发生痴呆/认知障碍,从卒中后 3 个月开始确定,使用国际疾病分类,第 9/10 版(ICD-9/10)编码。为了进行模型变量选择,我们考虑了 PSCI 的潜在预测因子,并在模型推导样本的三分之二内构建了 400 个引导样本。我们使用最小绝对收缩和选择算子(LASSO)惩罚进行了 10 折交叉验证 Cox 比例风险模型。在>25%的样本中选择的变量被纳入。
在开发队列中,有 332 例 PSCI 的确诊诊断(n=3741),内部(n=1925)和外部(n=2237)验证队列中分别有 161 例和 128 例确诊诊断。内部验证队列中 PSCI 的预测 C 统计量为 0.731(95%置信区间(CI):0.694-0.768),外部验证队列为 0.724(95%CI:0.681-0.766)。基于开发队列预测因子的 beta 系数的风险评分将患者分为低(0-7 分)、中(8-11 分)和高(12-23 分)风险组。内部(高风险,HR:6.2,95%CI:4.1-9.3;中风险,HR:2.7,95%CI:1.8-4.1)和外部(高风险,HR:6.1,95%CI:3.9-9.6;中风险,HR:2.8,95%CI:1.9-4.3)验证队列中,PSCI 发病的风险比(HR)存在显著差异。
使用常规收集的数据可以准确预测 5 年内 PSCI 的风险。模型输出可用于对 PSCI 风险进行分层,并识别高危人群,以便进行预防措施。
马萨诸塞州综合医院的数据包含受保护的健康信息,不能公开共享。感兴趣的研究人员可向通讯作者提出合理请求,获取用于执行分析的数据处理脚本。