State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
Jülich Centre for Neutron Science (JCNS), Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr, Garching, 185748, Germany.
Angew Chem Int Ed Engl. 2024 May 21;63(21):e202400531. doi: 10.1002/anie.202400531. Epub 2024 Apr 18.
Stress response, an intricate and autonomously coordinated reaction in living organisms, holds a reversible, multi-path, and multi-state nature. However, existing stimuli-responsive materials often exhibit single-step and monotonous reactions due to the limited integration of structural components. Inspired by the cooperative interplay of extensor and flexor cells within Mimosa's pulvini, we present a hydrogel with differentiated hydrogen-bonding (H-bonding) networks designed to enable the biological stress response. Weak H-bonding domains resemble flexor cells, confined within a hydrophobic network stabilized by strong H-bonding clusters (acting like extensor cells). Under external force, strong H-bonding clusters are disrupted, facilitating water diffusion from the bottom layer and enabling transient expansion pressure gradient along the thickness direction. Subsequently, water diffuses upward, gradually equalizing the pressure, while weak H-bonding domains undergo cooperative elastic deformation. Consequently, the hydrogel autonomously undergoes a sequence of reversible and pluralistic motion responses, similar to Mimosa's touch-triggered stress response. Intriguingly, it exhibits stress-dependent color shifts under polarized light, highlighting its potential for applications in time-sensitive "double-lock" information encryption systems. This work achieves the coordinated stress response inspired by natural tissues using a simple hydrogel, paving the way for substantial advancements in the development of intelligent soft robots.
应激反应是生物体中一种复杂且自主协调的反应,具有可逆、多途径和多态的性质。然而,由于结构组件的有限集成,现有的刺激响应材料通常表现出单步和单调的反应。受含羞草卷须中伸肌细胞和屈肌细胞协同作用的启发,我们设计了一种具有差异化氢键(H-bonding)网络的水凝胶,以实现生物应激反应。弱氢键域类似于屈肌细胞,被由强氢键簇稳定的疏水性网络所限制(类似于伸肌细胞)。在外部力的作用下,强氢键簇被破坏,促进水从底层扩散,并在厚度方向上产生瞬时膨胀压力梯度。随后,水向上扩散,逐渐使压力均衡,而弱氢键域则发生协同弹性变形。因此,水凝胶能够自主地经历一系列可逆的、多元的运动响应,类似于含羞草的触摸触发应激反应。有趣的是,它在偏振光下表现出与应力相关的颜色变化,这凸显了其在时间敏感的“双重锁定”信息加密系统中的应用潜力。这项工作通过简单的水凝胶实现了受自然组织启发的协调应激反应,为智能软机器人的发展铺平了道路。