Wu Zhangkai, Cao Longbing, Qi Lei
IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):3288-3299. doi: 10.1109/TNNLS.2024.3359275. Epub 2025 Feb 6.
Variational autoencoders (VAEs) are challenged by the imbalance between representation inference and task fitting caused by surrogate loss. To address this issue, existing methods adjust their balance by directly tuning their coefficients. However, these methods suffer from a tradeoff uncertainty, i.e., nondynamic regulation over iterations and inflexible hyperparameters for learning tasks. Accordingly, we make the first attempt to introduce an evolutionary VAE (eVAE), building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm (VGA) into VAE with variational evolutionary operators, including variational mutation (V-mutation), crossover, and evolution. Its training mechanism synergistically and dynamically addresses and updates the learning tradeoff uncertainty in the evidence lower bound (ELBO) without additional constraints and hyperparameter tuning. Furthermore, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and addresses the premature convergence and random search problem in integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all the disentangled factors with sharp images, and improves image generation quality. eVAE achieves better disentanglement, generation performance, and generation-inference balance than its competitors. Code available at: https://github.com/amasawa/eVAE.
变分自编码器(VAEs)受到替代损失导致的表示推断与任务拟合之间不平衡的挑战。为了解决这个问题,现有方法通过直接调整系数来调整它们的平衡。然而,这些方法存在权衡不确定性,即在迭代过程中缺乏动态调节以及学习任务的超参数不灵活。因此,我们首次尝试引入一种进化变分自编码器(eVAE),它基于变分信息瓶颈(VIB)理论和整合进化神经学习构建。eVAE将变分遗传算法(VGA)与变分进化算子(包括变分变异(V - mutation)、交叉和进化)集成到VAE中。其训练机制协同且动态地解决并更新证据下界(ELBO)中的学习权衡不确定性,无需额外约束和超参数调整。此外,eVAE提出了一种进化范式来调整VAE的关键因素,并解决了将进化优化集成到深度学习中时的过早收敛和随机搜索问题。实验表明,eVAE解决了文本生成中的KL消失问题,具有低重建损失,能生成具有清晰图像的所有解缠因素,并提高了图像生成质量。与竞争对手相比,eVAE实现了更好的解缠、生成性能以及生成 - 推断平衡。代码可在:https://github.com/amasawa/eVAE获取。