Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Water Digital Solutions, Hatch Ltd, 2800 Speakman Dr, Mississauga, Ontario L5K 2R7, Canada.
Dynamita SARL, 2015 route d'Aiglun, 06910 Sigale, France.
Sci Total Environ. 2024 Jun 1;927:172023. doi: 10.1016/j.scitotenv.2024.172023. Epub 2024 Mar 26.
A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.08, 0.18, 0.03, 0.07, and 0.1 mg/L, respectively. Simulation suggested that low dissolved oxygen (DO) environments favor K-strategist nitrifying bacteria and PAOs. In SNDPR, virtually all influent and fermentation-generated volatile fatty acids were assimilated as polyhydroxyalkanoates by PAOs in the anaerobic phase. In the aerobic phase, PAOs absorbed 997 % and 171 % of the benchmark influent total phosphorus mass loading through aerobic growth and denitrification via nitrite. These high percentages were because they were calculated relative to the influent total phosphorus, rather than total phosphorus at the end of the anaerobic period. When considering simultaneous nitrification and denitrification, about 23.1 % of influent total Kjeldahl nitrogen was eliminated through denitrification by PAOs and OHOs via nitrite, which reduced the need for both oxygen and carbon in nitrogen removal. Moreover, the microbial and DO profiles within the floc indicated a distinct stratification, with decreasing DO and OHOs, and increasing PAOs towards the inner layer. This study demonstrates a successful floc model that can be used to investigate and design SNDPR for scientific and practical purposes.
设计了一种用于同步硝化反硝化除磷(SNDPR)的综合絮体模型,该模型结合了聚磷菌(PAOs)、糖原积累菌(GAOs)、内在半饱和常数和明确的外部质量传递项。经过校准的模型能够有效地描述在一系列操作条件下的实验数据。估计的氨氧化菌、亚硝酸盐氧化菌、普通异养菌(OHOs)、PAOs 和 GAOs 的氧内在半饱和常数分别为 0.08、0.18、0.03、0.07 和 0.1mg/L。模拟结果表明,低溶解氧(DO)环境有利于 K 策略硝化细菌和 PAOs 的生长。在 SNDPR 中,实际上所有进水和发酵产生的挥发性脂肪酸都在厌氧阶段被 PAOs 同化作为聚羟基烷酸酯。在好氧阶段,PAOs 通过好氧生长和通过亚硝酸盐的反硝化作用,分别吸收了基准进水总磷质量负荷的 997%和 171%。这些高百分比是因为它们是相对于进水总磷而不是厌氧期末的总磷计算的。在考虑同步硝化反硝化时,约 23.1%的进水总凯氏氮通过 PAOs 和 OHOs 通过亚硝酸盐的反硝化作用被去除,这减少了氮去除过程中对氧气和碳的需求。此外,絮体中的微生物和 DO 分布表明存在明显的分层,DO 和 OHOs 逐渐减少,而 PAOs 逐渐向内部层增加。本研究展示了一种成功的絮体模型,可用于科学和实际目的的 SNDPR 研究和设计。