Brown University/The Warren Alpert School of Brown University, Providence, Rhode Island.
Harvard Medical School/Brigham and Women's, Boston, Massachusetts.
J Arthroplasty. 2024 Aug;39(8S1):S188-S199. doi: 10.1016/j.arth.2024.03.053. Epub 2024 Mar 27.
Dissatisfaction after total knee arthroplasty (TKA) ranges from 15 to 30%. While patient selection may be partially responsible, morphological and reconstructive challenges may be determinants. Preoperative computed tomography (CT) scans for TKA planning allow us to evaluate the hip-knee-ankle axis and establish a baseline phenotypic distribution across anatomic parameters. The purpose of this cross-sectional analysis was to establish the distributions of 27 parameters in a pre-TKA cohort and perform threshold analysis to identify anatomic outliers.
There were 1,352 pre-TKA CTs that were processed. A 2-step deep learning pipeline of classification and segmentation models identified landmark images and then generated contour representations. We used an open-source computer vision library to compute measurements for 27 anatomic metrics along the hip-knee axis. Normative distribution plots were established, and thresholds for the 15th percentile at both extremes were calculated. Metrics falling outside the central 70th percentile were considered outlier indices. A threshold analysis of outlier indices against the proportion of the cohort was performed.
Significant variation exists in pre-TKA anatomy across 27 normally distributed metrics. Threshold analysis revealed a sigmoid function with a critical point at 9 outlier indices, representing 31.2% of subjects as anatomic outliers. Metrics with the greatest variation related to deformity (tibiofemoral angle, medial proximal tibial angle, lateral distal femoral angle), bony size (tibial width, anteroposterior femoral size, femoral head size, medial femoral condyle size), intraoperative landmarks (posterior tibial slope, transepicondylar and posterior condylar axes), and neglected rotational considerations (acetabular and femoral version, femoral torsion).
In the largest non-industry database of pre-TKA CTs using a fully automated 3-stage deep learning and computer vision-based pipeline, marked anatomic variation exists. In the pursuit of understanding the dissatisfaction rate after TKA, acknowledging that 31% of patients represent anatomic outliers may help us better achieve anatomically personalized TKA, with or without adjunctive technology.
全膝关节置换术(TKA)后满意度为 15%至 30%。虽然患者选择可能部分负责,但形态和重建挑战可能是决定因素。用于 TKA 规划的术前计算机断层扫描(CT)允许我们评估髋膝踝轴,并确定解剖参数的基线表型分布。本横断面分析的目的是建立 TKA 前队列中 27 个参数的分布,并进行阈值分析以确定解剖学异常值。
共处理了 1352 例 TKA 前 CT。使用分类和分割模型的两步深度学习管道识别标志图像,然后生成轮廓表示。我们使用开源计算机视觉库沿髋膝轴计算 27 个解剖学指标的测量值。建立了正态分布图,并计算了两个极端的 15%百分位数的阈值。落在中心 70%百分位之外的度量被认为是异常值指标。对异常值指标与队列比例进行了阈值分析。
27 个正态分布指标的 TKA 前解剖存在显著差异。阈值分析显示,在有 9 个异常值指标的临界点存在一个 S 形函数,代表 31.2%的受试者为解剖学异常值。与畸形(胫股角、胫骨近端内侧角、股骨远端外侧角)、骨大小(胫骨宽度、前后股骨大小、股骨头大小、股骨内侧髁大小)、术中标志(胫骨后斜率、髁间和后髁轴)和忽略旋转考虑(髋臼和股骨版本、股骨扭转)相关的指标变化最大。
在使用全自动 3 阶段深度学习和基于计算机视觉的管道的最大非行业 TKA 前 CT 数据库中,存在明显的解剖变异。在寻求了解 TKA 后不满意率的过程中,认识到 31%的患者代表解剖学异常值可能有助于我们更好地实现解剖个性化 TKA,无论是否使用辅助技术。