Suppr超能文献

计算机断层扫描后髋部和膝部线性及角度测量的自动化:基于深度学习和计算机视觉的三阶段病理解剖评估流程的验证

Automating Linear and Angular Measurements for the Hip and Knee After Computed Tomography: Validation of a Three-Stage Deep Learning and Computer Vision-Based Pipeline for Pathoanatomic Assessment.

作者信息

Vidhani Faizaan R, Woo Joshua J, Zhang Yibin B, Olsen Reena J, Ramkumar Prem N

机构信息

Brown University/The Warren Alpert School of Brown University, Providence, RI, USA.

Harvard Medical School/Brigham and Women's, Boston, MA, USA.

出版信息

Arthroplast Today. 2024 May 11;27:101394. doi: 10.1016/j.artd.2024.101394. eCollection 2024 Jun.

Abstract

BACKGROUND

Variability in the bony morphology of pathologic hips/knees is a challenge in automating preoperative computed tomography (CT) scan measurements. With the increasing prevalence of CT for advanced preoperative planning, processing this data represents a critical bottleneck in presurgical planning, research, and development. The purpose of this study was to demonstrate a reproducible and scalable methodology for analyzing CT-based anatomy to process hip and knee anatomy for perioperative planning and execution.

METHODS

One hundred patients with preoperative CT scans undergoing total knee arthroplasty for osteoarthritis were processed. A two-step deep learning pipeline of classification and segmentation models was developed that identifies landmark images and then generates contour representations. We utilized an open-source computer vision library to compute measurements. Classification models were assessed by accuracy, precision, and recall. Segmentation models were evaluated using dice and mean Intersection over Union (IOU) metrics. Contour measurements were compared against manual measurements to validate posterior condylar axis angle, sulcus angle, trochlear groove-tibial tuberosity distance, acetabular anteversion, and femoral version.

RESULTS

Classifiers identified landmark images with accuracy of 0.91 and 0.88 for hip and knee models, respectively. Segmentation models demonstrated mean IOU scores above 0.95 with the highest dice coefficient of 0.957 [0.954-0.961] (UNet3+) and the highest mean IOU of 0.965 [0.961-0.969] (Attention U-Net). There were no statistically significant differences for the measurements taken automatically vs manually ( > 0.05). Average time for the pipeline to preprocess (48.65 +/- 4.41 sec), classify/retrieve landmark images (8.36 +/- 3.40 sec), segment images (<1 sec), and obtain measurements was 2.58 (+/- 1.92) minutes.

CONCLUSIONS

A fully automated three-stage deep learning and computer vision-based pipeline of classification and segmentation models accurately localized, segmented, and measured landmark hip and knee images for patients undergoing total knee arthroplasty. Incorporation of clinical parameters, like patient-reported outcome measures and instability risk, will be important considerations alongside anatomic parameters.

摘要

背景

病理性髋关节/膝关节的骨形态变异是术前计算机断层扫描(CT)测量自动化的一项挑战。随着CT在术前高级规划中的应用日益普遍,处理这些数据成为术前规划、研究与开发中的关键瓶颈。本研究的目的是展示一种可重复且可扩展的方法,用于分析基于CT的解剖结构,以处理髋关节和膝关节解剖结构用于围手术期规划与实施。

方法

对100例因骨关节炎接受全膝关节置换术且术前行CT扫描的患者进行处理。开发了一个由分类和分割模型组成的两步深度学习流程,该流程可识别地标图像,然后生成轮廓表示。我们利用一个开源计算机视觉库来计算测量值。分类模型通过准确率、精确率和召回率进行评估。分割模型使用骰子系数和平均交并比(IOU)指标进行评估。将轮廓测量值与手动测量值进行比较,以验证后髁轴角、沟角、滑车沟 - 胫骨结节距离、髋臼前倾角和股骨扭转角。

结果

分类器识别地标图像时,髋关节和膝关节模型的准确率分别为0.91和0.88。分割模型的平均IOU分数高于0.95,最高骰子系数为0.957[0.954 - 0.961](UNet3 +),最高平均IOU为0.965[0.961 - 0.969](注意力U - 网)。自动测量与手动测量之间无统计学显著差异(>0.05)。该流程预处理(48.65 ± 4.41秒)、分类/检索地标图像(8.36 ± 3.40秒)、分割图像(<1秒)以及获取测量值的平均时间为2.58(±1.92)分钟。

结论

一个基于深度学习和计算机视觉的、由分类和分割模型组成的全自动三阶段流程,能够准确地定位、分割和测量接受全膝关节置换术患者的髋关节和膝关节地标图像。除了解剖学参数外,纳入临床参数,如患者报告的结局指标和不稳定风险,将是重要的考虑因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3692/11282415/dbbf72f6f32d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验