Department of Chemistry, Iowa State University, Ames, IA 50011, United States.
Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States.
J Mol Biol. 2024 May 1;436(9):168553. doi: 10.1016/j.jmb.2024.168553. Epub 2024 Mar 27.
The catalytic cycle of Enzyme I (EI), a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate, is characterized by a series of local and global conformational rearrangements. This multistep process includes a monomer-to-dimer transition, followed by an open-to-closed rearrangement of the dimeric complex upon PEP binding. In the present study, we investigate the thermodynamics of EI dimerization using a range of high-pressure solution NMR techniques complemented by SAXS experiments. H-N TROSY and H-C methyl TROSY NMR spectra combined with N relaxation measurements revealed that a native-like engineered variant of full-length EI fully dissociates into stable monomeric state above 1.5 kbar. Conformational ensembles of EI monomeric state were generated via a recently developed protocol combining coarse-grained molecular simulations with experimental backbone residual dipolar coupling measurements. Analysis of the structural ensembles provided detailed insights into the molecular mechanisms driving formation of the catalytically competent dimeric state, and reveals that each step of EI catalytical cycle is associated with a significant reduction in either inter- or intra-domain conformational entropy. Altogether, this study completes a large body work conducted by our group on EI and establishes a comprehensive structural and dynamical description of the catalytic cycle of this prototypical multidomain, oligomeric enzyme.
酶 I(EI)的催化循环,是一种负责将磷酸烯醇丙酮酸(PEP)转化为丙酮酸的磷酸转移酶,其特征在于一系列局部和全局构象重排。这个多步骤过程包括单体到二聚体的转变,然后在 PEP 结合时,二聚体复合物发生开放到闭合的重排。在本研究中,我们使用一系列高压溶液 NMR 技术结合 SAXS 实验研究了 EI 二聚化的热力学。H-N TROSY 和 H-C 甲基 TROSY NMR 光谱结合 N 弛豫测量表明,全长 EI 的天然样工程变体在 1.5 千巴以上完全解离为稳定的单体状态。通过最近开发的结合粗粒度分子模拟和实验骨架残基偶极耦合测量的协议,生成了 EI 单体状态的构象集合。对结构集合的分析深入了解了驱动催化有效二聚体状态形成的分子机制,并表明 EI 催化循环的每一步都与要么是域间要么是域内构象熵的显著降低有关。总的来说,这项研究完成了我们小组对 EI 进行的大量工作,并为这种典型的多结构域、寡聚酶的催化循环建立了全面的结构和动力学描述。