Purslow Jeffrey A, Thimmesch Jolene N, Sivo Valeria, Nguyen Trang T, Khatiwada Balabhadra, Dotas Rochelle R, Venditti Vincenzo
Department of Chemistry, Iowa State University, Ames, IA, United States.
Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania, Caserta, Italy.
Front Mol Biosci. 2021 Jul 8;8:699203. doi: 10.3389/fmolb.2021.699203. eCollection 2021.
Enzyme I (EI) of the bacterial phosphotransferase system (PTS) is a master regulator of bacterial metabolism and a promising target for development of a new class of broad-spectrum antibiotics. The catalytic activity of EI is mediated by several intradomain, interdomain, and intersubunit conformational equilibria. Therefore, in addition to its relevance as a drug target, EI is also a good model for investigating the dynamics/function relationship in multidomain, oligomeric proteins. Here, we use solution NMR and protein design to investigate how the conformational dynamics occurring within the N-terminal domain (EIN) affect the activity of EI. We show that the rotameric -to- transition of the active site residue His χ2 angle is decoupled from the state A-to-state B transition that describes a ∼90° rigid-body rearrangement of the EIN subdomains upon transition of the full-length enzyme to its catalytically competent closed form. In addition, we engineered EIN constructs with modulated conformational dynamics by hybridizing EIN from mesophilic and thermophilic species, and used these chimeras to assess the effect of increased or decreased active site flexibility on the enzymatic activity of EI. Our results indicate that the rate of the autophosphorylation reaction catalyzed by EI is independent from the kinetics of the -to- rotameric transition that exposes the phosphorylation site on EIN to the incoming phosphoryl group. In addition, our work provides an example of how engineering of hybrid mesophilic/thermophilic chimeras can assist investigations of the dynamics/function relationship in proteins, therefore opening new possibilities in biophysics.
细菌磷酸转移酶系统(PTS)的酶I(EI)是细菌新陈代谢的主要调节因子,也是开发新型广谱抗生素的一个有前景的靶点。EI的催化活性由几个结构域内、结构域间和亚基间的构象平衡介导。因此,除了作为药物靶点的相关性外,EI也是研究多结构域寡聚蛋白中动力学/功能关系的良好模型。在这里,我们使用溶液核磁共振和蛋白质设计来研究N端结构域(EIN)内发生的构象动力学如何影响EI的活性。我们表明,活性位点残基His χ2角的旋转异构体从α到β的转变与A状态到B状态的转变解耦,后者描述了全长酶转变为其催化活性的闭合形式时EIN亚结构域约90°的刚体重排。此外,我们通过将嗜温菌和嗜热菌的EIN杂交,构建了具有调节构象动力学的EIN构建体,并使用这些嵌合体来评估活性位点灵活性增加或降低对EI酶活性的影响。我们的结果表明,EI催化的自磷酸化反应速率与将EIN上的磷酸化位点暴露于进入的磷酰基的从α到β旋转异构体转变的动力学无关。此外,我们的工作提供了一个例子,说明嗜温/嗜热杂交嵌合体的工程设计如何有助于研究蛋白质中的动力学/功能关系,从而为生物物理学开辟了新的可能性。