Suppr超能文献

阐明 elusive Enzyme I 单体的结构揭示了连接寡聚化和酶活性的分子机制。

Structure elucidation of the elusive Enzyme I monomer reveals the molecular mechanisms linking oligomerization and enzymatic activity.

机构信息

Department of Chemistry, Iowa State University, Ames, IA 50011.

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892.

出版信息

Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2100298118.

Abstract

Enzyme I (EI) is a phosphotransferase enzyme responsible for converting phosphoenolpyruvate (PEP) into pyruvate. This reaction initiates a five-step phosphorylation cascade in the bacterial phosphotransferase (PTS) transduction pathway. Under physiological conditions, EI exists in an equilibrium between a functional dimer and an inactive monomer. The monomer-dimer equilibrium is a crucial factor regulating EI activity and the phosphorylation state of the overall PTS. Experimental studies of EI's monomeric state have yet been hampered by the dimer's high thermodynamic stability, which prevents its characterization by standard structural techniques. In this study, we modified the dimerization domain of EI (EIC) by mutating three amino acids involved in the formation of intersubunit salt bridges. The engineered variant forms an active dimer in solution that can bind and hydrolyze PEP. Using hydrostatic pressure as an additional perturbation, we were then able to study the complete dissociation of the variant from 1 bar to 2.5 kbar in the absence and the presence of EI natural ligands. Backbone residual dipolar couplings collected under high-pressure conditions allowed us to determine the conformational ensemble of the isolated EIC monomeric state in solution. Our calculations reveal that three catalytic loops near the dimerization interface become unstructured upon monomerization, preventing the monomeric enzyme from binding its natural substrate. This study provides an atomic-level characterization of EI's monomeric state and highlights the role of the catalytic loops as allosteric connectors controlling both the activity and oligomerization of the enzyme.

摘要

酶 I(EI)是一种磷酸转移酶,负责将磷酸烯醇丙酮酸(PEP)转化为丙酮酸。这个反应启动了细菌磷酸转移酶(PTS)转导途径中的五步磷酸化级联反应。在生理条件下,EI 存在于功能二聚体和无活性单体之间的平衡中。单体-二聚体平衡是调节 EI 活性和整个 PTS 磷酸化状态的关键因素。EI 单体状态的实验研究一直受到二聚体高热力学稳定性的阻碍,这阻止了其通过标准结构技术进行表征。在这项研究中,我们通过突变三个参与形成亚基间盐桥的氨基酸来修饰 EI 的二聚化结构域(EIC)。该工程变体在溶液中形成活性二聚体,能够结合并水解 PEP。然后,我们使用静水压力作为额外的扰动,研究了该变体在缺乏和存在 EI 天然配体的情况下从 1 巴完全解离到 2.5 千巴的过程。在高压条件下收集的骨架残基偶极耦合允许我们确定溶液中分离的 EIC 单体状态的构象集合。我们的计算表明,二聚化界面附近的三个催化环在单体化时变得无结构,阻止单体酶结合其天然底物。这项研究提供了 EI 单体状态的原子水平表征,并强调了催化环作为变构连接体的作用,控制着酶的活性和寡聚化。

相似文献

引用本文的文献

5
Temperature-sensitive contacts in disordered loops tune enzyme I activity.温度敏感接触在无序环中调节酶 I 的活性。
Proc Natl Acad Sci U S A. 2022 Nov 22;119(47):e2210537119. doi: 10.1073/pnas.2210537119. Epub 2022 Nov 14.

本文引用的文献

7
Exploring Protein Conformational Landscapes Using High-Pressure NMR.利用高压核磁共振探索蛋白质构象景观。
Methods Enzymol. 2019;614:293-320. doi: 10.1016/bs.mie.2018.07.006. Epub 2018 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验