Suppr超能文献

一种从 3D 聚焦离子束扫描电子显微镜数据中提取线粒体嵴特征的半自动方法。

A semi-automatic method for extracting mitochondrial cristae characteristics from 3D focused ion beam scanning electron microscopy data.

机构信息

Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.

Center for Quantification of Imaging Data from MAX IV, Copenhagen, Denmark.

出版信息

Commun Biol. 2024 Mar 28;7(1):377. doi: 10.1038/s42003-024-06045-4.

Abstract

Mitochondria are the main suppliers of energy for cells and their bioenergetic function is regulated by mitochondrial dynamics: the constant changes in mitochondria size, shape, and cristae morphology to secure cell homeostasis. Although changes in mitochondrial function are implicated in a wide range of diseases, our understanding is challenged by a lack of reliable ways to extract spatial features from the cristae, the detailed visualization of which requires electron microscopy (EM). Here, we present a semi-automatic method for the segmentation, 3D reconstruction, and shape analysis of mitochondria, cristae, and intracristal spaces based on 2D EM images of the murine hippocampus. We show that our method provides a more accurate characterization of mitochondrial ultrastructure in 3D than common 2D approaches and propose an operational index of mitochondria's internal organization. With an improved consistency of 3D shape analysis and a decrease in the workload needed for large-scale analysis, we speculate that this tool will help increase our understanding of mitochondrial dynamics in health and disease.

摘要

线粒体是细胞能量的主要供应者,其生物能量功能受到线粒体动力学的调节:线粒体大小、形状和嵴形态的不断变化,以确保细胞的内稳态。尽管线粒体功能的变化与广泛的疾病有关,但由于缺乏可靠的方法从嵴中提取空间特征,我们对其的理解受到了挑战,而详细可视化嵴需要电子显微镜 (EM)。在这里,我们提出了一种基于小鼠海马体的 2D EM 图像的线粒体、嵴和嵴内空间的分割、3D 重建和形状分析的半自动方法。我们表明,与常见的 2D 方法相比,我们的方法能够更准确地描述线粒体的 3D 超微结构,并提出了一个线粒体内部组织的操作指标。通过提高 3D 形状分析的一致性和减少大规模分析所需的工作量,我们推测这个工具将有助于增加我们对健康和疾病中线粒体动力学的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36d9/10978844/ccc7ad247a19/42003_2024_6045_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验