Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
School of Computer Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
Sci Rep. 2024 Mar 28;14(1):7395. doi: 10.1038/s41598-024-58151-2.
Serous cavity effusion is a prevalent pathological condition encountered in clinical settings. Fluid samples obtained from these effusions are vital for diagnostic and therapeutic purposes. Traditionally, cytological examination of smears is a common method for diagnosing serous cavity effusion, renowned for its convenience. However, this technique presents limitations that can compromise its efficiency and diagnostic accuracy. This study aims to overcome these challenges and introduce an improved method for the precise detection of malignant cells in serous cavity effusions. We have developed a transformer-based classification framework, specifically employing the vision transformer (ViT) model, to fulfill this objective. Our research involved collecting smear images and corresponding cytological reports from 161 patients who underwent serous cavity drainage. We meticulously annotated 4836 patches from these images, identifying regions with and without malignant cells, thus creating a unique dataset for smear image classification. The findings of our study reveal that deep learning models, particularly the ViT model, exhibit remarkable accuracy in classifying patches as malignant or non-malignant. The ViT model achieved an impressive area under the receiver operating characteristic curve (AUROC) of 0.99, surpassing the performance of the convolutional neural network (CNN) model, which recorded an AUROC of 0.86. Additionally, we validated our models using an external cohort of 127 patients. The ViT model sustained its high-level screening performance, achieving an AUROC of 0.98 at the patient level, compared to the CNN model's AUROC of 0.84. The visualization of our ViT models confirmed their capability to precisely identify regions containing malignant cells in multiple serous cavity effusion smear images. In summary, our study demonstrates the potential of deep learning models, particularly the ViT model, in automating the screening process for serous cavity effusions. These models offer significant assistance to cytologists in enhancing diagnostic accuracy and efficiency. The ViT model stands out for its advanced self-attention mechanism, making it exceptionally suitable for tasks that necessitate detailed analysis of small, sparsely distributed targets like cellular clusters in serous cavity effusions.
浆膜腔积液是临床中常见的病理情况。从这些积液中获取的样本对于诊断和治疗至关重要。传统上,涂片的细胞学检查是诊断浆膜腔积液的常用方法,以其便捷性而著称。然而,这种技术存在限制,可能会影响其效率和诊断准确性。本研究旨在克服这些挑战,引入一种改进的方法,以精确检测浆膜腔积液中的恶性细胞。我们开发了一种基于变压器的分类框架,特别采用了视觉变压器 (ViT) 模型来实现这一目标。我们的研究涉及从 161 名接受浆膜腔引流的患者中收集涂片图像和相应的细胞学报告。我们仔细标注了这些图像中的 4836 个斑块,识别出有和没有恶性细胞的区域,从而为涂片图像分类创建了一个独特的数据集。我们的研究结果表明,深度学习模型,特别是 ViT 模型,在分类斑块为恶性或非恶性方面表现出很高的准确性。ViT 模型在接收器操作特征曲线 (AUROC) 下的面积达到了 0.99,超过了卷积神经网络 (CNN) 模型的 0.86。此外,我们使用 127 名患者的外部队列验证了我们的模型。ViT 模型在高水平的筛选性能上保持稳定,在患者水平上的 AUROC 为 0.98,而 CNN 模型的 AUROC 为 0.84。我们 ViT 模型的可视化结果证实了它们能够精确识别多个浆膜腔积液涂片图像中含有恶性细胞的区域。总之,我们的研究表明,深度学习模型,特别是 ViT 模型,在自动化浆膜腔积液的筛选过程中具有潜力。这些模型为细胞学专家提供了重要的帮助,提高了诊断的准确性和效率。ViT 模型以其先进的自注意力机制脱颖而出,非常适合需要对浆膜腔积液中细胞簇等小而稀疏分布的目标进行详细分析的任务。