文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Machine learning models based on quantitative dynamic contrast-enhanced MRI parameters assess the expression levels of CD3, CD4, and CD8 tumor-infiltrating lymphocytes in advanced gastric carcinoma.

作者信息

Huang Huizhen, Li Zhiheng, Wang Dandan, Yang Ye, Jin Hongyan, Lu Zengxin

机构信息

Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.

Department of Pathology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China.

出版信息

Front Oncol. 2024 Mar 14;14:1365550. doi: 10.3389/fonc.2024.1365550. eCollection 2024.


DOI:10.3389/fonc.2024.1365550
PMID:38549936
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10973004/
Abstract

OBJECTIVE: To explore the effectiveness of machine learning classifiers based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in predicting the expression levels of CD3, CD4 and CD8 tumor-infiltrating lymphocytes (TILs) in patients with advanced gastric cancer (AGC). METHODS: This study investigated 103 patients with confirmed AGC through DCE-MRI and immunohistochemical staining. Immunohistochemical staining was used to evaluate CD3, CD4, and CD8 T-cell expression. Utilizing Omni Kinetics software, radiomics features (K, K, and V) were extracted and underwent selection via variance threshold, SelectKBest, and LASSO methods. Logistic regression (LR), support vector machine (SVM), random forest (RF), and eXtreme Gradient Boosting (XGBoost) are the four classifiers used to build four machine learning (ML) models, and their performance was evaluated using 10-fold cross-validation. The model's performance was evaluated and compared using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS: In terms of CD3, CD4, and CD8 T lymphocyte prediction models, the random forest model outperformed the other classifier models in terms of CD4 and CD8 T cell prediction, with AUCs of 0.913 and 0.970 on the training set and 0.904 and 0.908 on the validation set, respectively. In terms of CD3 T cell prediction, the logistic regression model fared the best, with AUCs on the training and validation sets of 0.872 and 0.817, respectively. CONCLUSION: Machine learning classifiers based on DCE-MRI have the potential to accurately predict CD3, CD4, and CD8 tumor-infiltrating lymphocyte expression levels in patients with AGC.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/fc03931f66e6/fonc-14-1365550-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/b88a1a569770/fonc-14-1365550-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/62fb85157153/fonc-14-1365550-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/0c6238346ad9/fonc-14-1365550-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/89d1cd30433b/fonc-14-1365550-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/19bd49e02a63/fonc-14-1365550-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/fc03931f66e6/fonc-14-1365550-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/b88a1a569770/fonc-14-1365550-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/62fb85157153/fonc-14-1365550-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/0c6238346ad9/fonc-14-1365550-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/89d1cd30433b/fonc-14-1365550-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/19bd49e02a63/fonc-14-1365550-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65d7/10973004/fc03931f66e6/fonc-14-1365550-g006.jpg

相似文献

[1]
Machine learning models based on quantitative dynamic contrast-enhanced MRI parameters assess the expression levels of CD3, CD4, and CD8 tumor-infiltrating lymphocytes in advanced gastric carcinoma.

Front Oncol. 2024-3-14

[2]
Association between radiomics features of DCE-MRI and CD8 and CD4 TILs in advanced gastric cancer.

Pathol Oncol Res. 2023

[3]
Machine learning for MRI radiomics: a study predicting tumor-infiltrating lymphocytes in patients with pancreatic ductal adenocarcinoma.

Abdom Radiol (NY). 2021-10

[4]
[Value of the application of enhanced CT radiomics and machine learning in preoperative prediction of microvascular invasion in hepatocellular carcinoma].

Zhonghua Yi Xue Za Zhi. 2021-5-11

[5]
Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.

Invest Radiol. 2019-2

[6]
Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study.

Biomed Phys Eng Express. 2023-12-20

[7]
Machine learning-based MRI radiomics for assessing the level of tumor infiltrating lymphocytes in oral tongue squamous cell carcinoma: a pilot study.

BMC Med Imaging. 2024-2-5

[8]
Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics.

J Med Ultrason (2001). 2024-1

[9]
Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.

Quant Imaging Med Surg. 2021-5

[10]
Performance of radiomics models for tumour-infiltrating lymphocyte (TIL) prediction in breast cancer: the role of the dynamic contrast-enhanced (DCE) MRI phase.

Eur Radiol. 2022-2

引用本文的文献

[1]
Application of deep learning convolutional neural networks to identify gastric squamous cell carcinoma in mice.

Front Med (Lausanne). 2025-5-13

[2]
Radiomics in Oesogastric Cancer: Staging and Prediction of Preoperative Treatment Response: A Narrative Review and the Results of Personal Experience.

Cancers (Basel). 2024-7-26

本文引用的文献

[1]
Application of radiomics-based multiomics combinations in the tumor microenvironment and cancer prognosis.

J Transl Med. 2023-9-6

[2]
Association between radiomics features of DCE-MRI and CD8 and CD4 TILs in advanced gastric cancer.

Pathol Oncol Res. 2023

[3]
Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics.

J Magn Reson Imaging. 2023-11

[4]
Microenvironmental Factors in Oral Cavity Squamous Cell Carcinoma Undergoing Surgery: Correlation with Diffusion Kurtosis Imaging and Dynamic Contrast-Enhanced MRI.

Cancers (Basel). 2022-12-20

[5]
Gastric Cancer and the Immune System: The Key to Improving Outcomes?

Cancers (Basel). 2022-11-30

[6]
Recent Trends and Advancements in the Diagnosis and Management of Gastric Cancer.

Cancers (Basel). 2022-11-15

[7]
Association of Machine Learning-Based Assessment of Tumor-Infiltrating Lymphocytes on Standard Histologic Images With Outcomes of Immunotherapy in Patients With NSCLC.

JAMA Oncol. 2023-1-1

[8]
Systemic CD4 Immunity and PD-L1/PD-1 Blockade Immunotherapy.

Int J Mol Sci. 2022-10-31

[9]
Therapeutic strategies for gastric cancer targeting immune cells: Future directions.

Front Immunol. 2022

[10]
Intratumoral PD-1CD8 T cells associate poor clinical outcomes and adjuvant chemotherapeutic benefit in gastric cancer.

Br J Cancer. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索