Suppr超能文献

在替代性全生物体模型中,神经行为和大脑发育如何有助于预测发育性神经毒性。

How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity.

作者信息

Collins Eva-Maria S, Hessel Ellen V S, Hughes Samantha

机构信息

Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.

Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands.

出版信息

Neurotoxicology. 2024 May;102:48-57. doi: 10.1016/j.neuro.2024.03.005. Epub 2024 Mar 28.

Abstract

Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.

摘要

发育神经毒性(DNT)在化学物质风险评估中通常不会进行常规评估,因为目前用于DNT的测试范式需要使用哺乳动物模型,而这些模型在伦理上存在争议、成本高昂且资源需求大。因此,人们致力于通过经济实惠的新型替代方法来革新DNT测试,以进行风险评估。目标是开发一套适用于高通量筛选(HTS)的体外DNT测试组合。目前,体外DNT测试组合主要由基于人类细胞的检测方法组成,因为它们与人类健康直接相关。然而,仅靠这些基于细胞的检测方法无法捕捉发育中神经系统的复杂性。迫切需要符合3R(替代、减少和优化)模型的完整生物体系统来补充基于细胞的DNT测试。这些模型可以提供必要的生物体背景,并通过将分子和/或细胞变化与行为读数联系起来,用于探索化学物质对脑功能的影响。线虫秀丽隐杆线虫、涡虫日本三角涡虫和斑马鱼胚胎都适合低成本的高通量筛选,并且每种生物在DNT测试方面都有独特的优势。在这里,我们在一个新颖的综合背景下回顾了这些生物的优势和互补性,并强调它们如何能够增强当前基于细胞的检测方法,以便对化学物质进行更全面、更可靠的DNT筛选。考虑到所有体外测试系统的局限性,我们讨论了如何巧妙地组合使用这些系统,将有助于对考虑发育中大脑复杂性的化学物质进行更符合人类实际情况的风险评估。

相似文献

2
Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity.
Crit Rev Toxicol. 2024 May;54(5):330-343. doi: 10.1080/10408444.2024.2342448. Epub 2024 Jun 4.
6
Human Ntera2 cells as a predictive in vitro test system for developmental neurotoxicity.
Arch Toxicol. 2014 Jan;88(1):127-36. doi: 10.1007/s00204-013-1098-1. Epub 2013 Aug 7.
7
Towards a regulatory use of alternative developmental neurotoxicity testing (DNT).
Toxicol Appl Pharmacol. 2018 Sep 1;354:19-23. doi: 10.1016/j.taap.2018.02.002. Epub 2018 Feb 14.
9
Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods.
Toxicol Appl Pharmacol. 2018 Sep 1;354:7-18. doi: 10.1016/j.taap.2018.02.008. Epub 2018 Feb 22.

本文引用的文献

2
A perspective on In vitro developmental neurotoxicity test assay results: An expert panel review.
Regul Toxicol Pharmacol. 2023 Sep;143:105444. doi: 10.1016/j.yrtph.2023.105444. Epub 2023 Jul 11.
3
Comparative toxicity assessment of glyphosate and two commercial formulations in the planarian .
Front Toxicol. 2023 Jun 26;5:1200881. doi: 10.3389/ftox.2023.1200881. eCollection 2023.
4
Advances in PAH mixture toxicology enabled by zebrafish.
Curr Opin Toxicol. 2023 Jun;34. doi: 10.1016/j.cotox.2023.100392. Epub 2023 Mar 11.
5
How Many Chemicals in Commerce Have Been Analyzed in Environmental Media? A 50 Year Bibliometric Analysis.
Environ Sci Technol. 2023 Jun 27;57(25):9119-9129. doi: 10.1021/acs.est.2c09353. Epub 2023 Jun 15.
6
Neuronal contact predicts connectivity in the C. elegans brain.
Curr Biol. 2023 Jun 5;33(11):2315-2320.e2. doi: 10.1016/j.cub.2023.04.071. Epub 2023 May 26.
7
Learning and memory formation in zebrafish: Protein dynamics and molecular tools.
Front Cell Dev Biol. 2023 Mar 9;11:1120984. doi: 10.3389/fcell.2023.1120984. eCollection 2023.
8
Evaluation of in vitro toxicity information for zebrafish as a promising alternative for chemical hazard and risk assessment.
Sci Total Environ. 2023 May 10;872:162262. doi: 10.1016/j.scitotenv.2023.162262. Epub 2023 Feb 16.
9
Developmental Neurotoxicity Screen of Psychedelics and Other Drugs of Abuse in Larval Zebrafish ().
ACS Chem Neurosci. 2023 Mar 1;14(5):875-884. doi: 10.1021/acschemneuro.2c00642. Epub 2023 Feb 8.
10
New Worm on the Block: Planarians in (Neuro)Toxicology.
Curr Protoc. 2022 Dec;2(12):e637. doi: 10.1002/cpz1.637.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验