Suppr超能文献

电纺支架不一定都是由纳米纤维制成,如用于组织工程的聚合物心脏瓣膜所示。

Electrospun Scaffolds are Not Necessarily Always Made of Nanofibers as Demonstrated by Polymeric Heart Valves for Tissue Engineering.

机构信息

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.

Institute for Biomechanics, Department of Aeronautics and Astronautics, Fudan University, Shanghai, 200433, China.

出版信息

Adv Healthc Mater. 2024 Jun;13(16):e2303395. doi: 10.1002/adhm.202303395. Epub 2024 Apr 11.

Abstract

In the last 30 years, there are ≈60 000 publications about electrospun nanofibers, but it is still unclear whether nanoscale fibers are really necessary for electrospun tissue engineering scaffolds. The present report puts forward this argument and reveals that compared with electrospun nanofibers, microfibers with diameter of ≈3 µm (named as "oligo-micro fiber") are more appropriate for tissue engineering scaffolds owing to their better cell infiltration ability caused by larger pores with available nuclear deformation. To further increase pore sizes, electrospun poly(ε-caprolactone) (PCL) scaffolds are fabricated using latticed collectors with meshes. Fiber orientation leads to sufficient mechanical strength albeit increases porosity. The latticed scaffolds exhibit good biocompatibility and improve cell infiltration. Under aortic conditions in vitro, the performances of latticed scaffolds are satisfactory in terms of the acute systolic hemodynamic functionality, except for the higher regurgitation fraction caused by the enlarged pores. This hierarchical electrospun scaffold with sparse fibers in macropores and oligo-micro fibers in filaments provides new insights into the design of tissue engineering scaffolds, and tissue engineering may provide living heart valves with regenerative capabilities for patients with severe valve disease in the future.

摘要

在过去的 30 年中,已经有 ≈60000 篇关于静电纺丝纳米纤维的出版物,但纳米纤维是否真的对静电纺丝组织工程支架是必需的,目前仍不清楚。本报告提出了这一观点,并揭示了与静电纺纳米纤维相比,直径约为 3 µm 的微纤维(称为“寡微纤维”)更适合用于组织工程支架,因为其更大的孔可以提供核变形,从而具有更好的细胞渗透能力。为了进一步增加孔径,使用具有网格的格子收集器来制造聚己内酯(PCL)的静电纺丝支架。纤维取向导致足够的机械强度,尽管会增加孔隙率。格子支架具有良好的生物相容性并能改善细胞渗透。在体外主动脉条件下,格子支架在急性收缩血液动力学功能方面表现良好,除了由于孔径增大导致的较高反流分数外。这种具有大孔中稀疏纤维和细丝中的寡微纤维的分级静电纺丝支架为组织工程支架的设计提供了新的见解,组织工程可能会为患有严重瓣膜疾病的患者提供具有再生能力的活心脏瓣膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验