Suppr超能文献

二硒化铪中的压力驱动金属化

Pressure-Driven Metallization in Hafnium Diselenide.

作者信息

Andrada-Chacón Adrián, Morales-García Ángel, Salvadó Miguel A, Pertierra Pilar, Franco Ruth, Garbarino Gastón, Taravillo Mercedes, Barreda-Argüeso José A, González Jesús, García Baonza Valentín, Recio J Manuel, Sánchez-Benítez Javier

机构信息

MALTA-Consolider Team, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain.

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/ Martí i Franquès, 1-11, Barcelona 08028, Spain.

出版信息

Inorg Chem. 2021 Feb 1;60(3):1746-1754. doi: 10.1021/acs.inorgchem.0c03223. Epub 2021 Jan 15.

Abstract

The quest for new transition metal dichalcogenides (TMDs) with outstanding electronic properties operating under ambient conditions draws us to investigate the 1T-HfSe polytype under hydrostatic pressure. Diamond anvil cell (DAC) devices coupled to synchrotron X-ray, Raman, and optical (VIS-NIR) absorption experiments along with density functional theory (DFT)-based calculations prove that (i) bulk 1T-HfSe exhibits strong structural and vibrational anisotropies, being the interlayer direction especially sensitive to pressure changes, (ii) the indirect gap of 1T-HfSe tends to vanish by a -0.1 eV/GPa pressure rate, slightly faster than MoS or WS, (iii) the onset of the metallic behavior appears at ∼10 GPa, which is to date the lowest pressure among common TMDs, and finally, (iv) the electronic transition is explained by the bulk modulus - correlation, along with the pressure coefficient of the band gap, in terms of the electronic overlap between chalcogenide p-type and metal d-type orbitals. Overall, our findings identify 1T-HfSe as a new efficient TMD material with potential multipurpose technological applications.

摘要

对在环境条件下具有优异电子性能的新型过渡金属二硫属化物(TMDs)的探索促使我们研究静水压力下的1T-HfSe多型体。结合同步加速器X射线、拉曼光谱和光学(可见-近红外)吸收实验的金刚石对顶砧(DAC)装置以及基于密度泛函理论(DFT)的计算表明:(i)块状1T-HfSe表现出强烈的结构和振动各向异性,层间方向对压力变化尤为敏感;(ii)1T-HfSe的间接带隙以-0.1 eV/GPa的压力速率趋于消失,略快于MoS或WS;(iii)金属行为在约10 GPa时开始出现,这是迄今为止常见TMDs中最低的压力;最后,(iv)根据硫族化物p型和金属d型轨道之间的电子重叠,通过体模量-相关性以及带隙的压力系数来解释电子跃迁。总体而言,我们的研究结果将1T-HfSe确定为一种具有潜在多用途技术应用的新型高效TMD材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验