School of Psychology, University of Aberdeen, William Guild Building, Aberdeen, AB24 3FX, UK.
School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP, UK.
Psychol Res. 2024 Jul;88(5):1678-1690. doi: 10.1007/s00426-024-01947-8. Epub 2024 Mar 30.
In grasping studies, maximum grip aperture (MGA) is commonly used as an indicator of the object size representation within the visuomotor system. However, a number of additional factors, such as movement safety, comfort, and efficiency, might affect the scaling of MGA with object size and potentially mask perceptual effects on actions. While unimanual grasping has been investigated for a wide range of object sizes, so far very small objects (<5 mm) have not been included. Investigating grasping of these tiny objects is particularly interesting because it allows us to evaluate the three most prominent explanatory accounts of grasping (the perception-action model, the digits-in-space hypothesis, and the biomechanical account) by comparing the predictions that they make for these small objects. In the first experiment, participants ( ) grasped and manually estimated the height of square cuboids with heights from 0.5 to 5 mm. In the second experiment, a different sample of participants ( ) performed the same tasks with square cuboids with heights from 5 to 20 mm. We determined MGAs, manual estimation apertures (MEA), and the corresponding just-noticeable differences (JND). In both experiments, MEAs scaled with object height and adhered to Weber's law. MGAs for grasping scaled with object height in the second experiment but not consistently in the first experiment. JNDs for grasping never scaled with object height. We argue that the digits-in-space hypothesis provides the most plausible account of the data. Furthermore, the findings highlight that the reliability of MGA as an indicator of object size is strongly task-dependent.
在抓握研究中,最大握力开口(MGA)通常被用作视动系统中物体大小表示的指标。然而,许多其他因素,如运动安全性、舒适性和效率,可能会影响 MGA 与物体大小的缩放比例,并可能掩盖对动作的感知影响。虽然单手抓握已经针对各种物体大小进行了广泛研究,但到目前为止,还没有包括非常小的物体(<5mm)。研究这些微小物体的抓握特别有趣,因为它允许我们通过比较它们对这些小物体的预测来评估抓握的三个最突出的解释性解释(感知-动作模型、数字在空间中的假设和生物力学解释)。在第一个实验中,参与者()抓握并手动估计高度从 0.5 到 5mm 的正方形长方体的高度。在第二个实验中,不同的参与者样本()用高度从 5 到 20mm 的正方形长方体执行相同的任务。我们确定了 MGA、手动估计孔径(MEA)和相应的最小可觉差(JND)。在两个实验中,MEA 与物体高度成比例,符合韦伯定律。第二个实验中抓握的 MGA 与物体高度成比例,但在第一个实验中并不一致。抓握的 JND 从不与物体高度成比例。我们认为,数字在空间中的假设提供了最合理的解释。此外,这些发现强调了 MGA 作为物体大小指标的可靠性强烈依赖于任务。