Suppr超能文献

基于机器学习的结直肠癌肿瘤浸润淋巴细胞分析的系统综述:技术概述、性能指标和临床结果

A systematic review of machine learning-based tumor-infiltrating lymphocytes analysis in colorectal cancer: Overview of techniques, performance metrics, and clinical outcomes.

作者信息

Kazemi Azar, Rasouli-Saravani Ashkan, Gharib Masoumeh, Albuquerque Tomé, Eslami Saeid, Schüffler Peter J

机构信息

Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Institute of General and Surgical Pathology, Technical University of Munich, Munich, Germany.

Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Comput Biol Med. 2024 May;173:108306. doi: 10.1016/j.compbiomed.2024.108306. Epub 2024 Mar 13.

Abstract

The incidence of colorectal cancer (CRC), one of the deadliest cancers around the world, is increasing. Tissue microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs) can have a crucial impact on diagnosis or decision-making for treating patients with CRC. While clinical studies showed that TILs improve the host immune response, leading to a better prognosis, inter-observer agreement for quantifying TILs is not perfect. Incorporating machine learning (ML) based applications in clinical routine may promote diagnosis reliability. Recently, ML has shown potential for making progress in routine clinical procedures. We aim to systematically review the TILs analysis based on ML in CRC histological images. Deep learning (DL) and non-DL techniques can aid pathologists in identifying TILs, and automated TILs are associated with patient outcomes. However, a large multi-institutional CRC dataset with a diverse and multi-ethnic population is necessary to generalize ML methods.

摘要

结直肠癌(CRC)是全球最致命的癌症之一,其发病率正在上升。组织微环境(TME)特征,如肿瘤浸润淋巴细胞(TILs),对CRC患者的诊断或治疗决策可能产生至关重要的影响。虽然临床研究表明TILs可改善宿主免疫反应,从而带来更好的预后,但观察者之间对TILs定量的一致性并不理想。将基于机器学习(ML)的应用纳入临床常规操作可能会提高诊断的可靠性。最近,ML在常规临床程序中已显示出取得进展的潜力。我们旨在系统回顾基于ML的CRC组织学图像中TILs分析。深度学习(DL)和非DL技术可帮助病理学家识别TILs,且自动TILs与患者预后相关。然而,需要一个包含不同种族人群的大型多机构CRC数据集来推广ML方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验