文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合多组学和机器学习方法揭示了结直肠癌中氨基酸及其衍生物相关特征的代谢情况。

Integrating multi-omics and machine learning methods reveals the metabolism of amino acids and derivatives-related signature in colorectal cancer.

作者信息

Yue Jian, Fang Huiying, Yang Qian, Feng Rui, Ren Guosheng

机构信息

Department of Breast and Thyroid Surgery, Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Breast Surgery, Gaozhou People's Hospital, Gaozhou, Guangdong, China.

出版信息

Front Oncol. 2025 Mar 26;15:1565090. doi: 10.3389/fonc.2025.1565090. eCollection 2025.


DOI:10.3389/fonc.2025.1565090
PMID:40206583
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11978647/
Abstract

OBJECTIVE: The metabolism of amino acids and derivatives (MAAD) is closely related to the occurrence and development of colorectal cancer (CRC), but the specific regulatory mechanisms are not yet clear. This study aims to explore the role of MAAD in the progression of colorectal cancer and ultimately identify key molecules that may become potential therapeutic targets for CRC. METHODS: This study integrates bulk transcriptome and single-cell transcriptome to analyze and identify key MAAD-related genes from multiple levels. Subsequently, numerous machine learning methods were incorporated to construct MAAD-related prognostic models, and the infiltration of immune cells, tumor heterogeneity, tumor mutation burden, and potential pathway changes under different modes were analyzed. Finally, key molecules were identified for experimental validation. RESULTS: We successfully constructed prognostic models and Nomograms based on key MAAD-related molecules. There was a notable survival benefit observed for low-risk patients when contrasted with their high-risk counterparts. In addition, the high-risk group had a poorer response to immunotherapy and stronger tumor heterogeneity compared with the low-risk group. Further research found that by knocking down the MAAD-related gene. LSM8, the malignant characteristics of colorectal cancer cell lines were significantly alleviated, suggesting that LSM8 may become a potential therapeutic target. CONCLUSION: The MAAD-related gene LSM8 is likely involved in the progression of CRC and could be a hopeful target for therapeutic intervention.

摘要

目的:氨基酸及其衍生物代谢(MAAD)与结直肠癌(CRC)的发生发展密切相关,但其具体调控机制尚不清楚。本研究旨在探讨MAAD在结直肠癌进展中的作用,并最终确定可能成为CRC潜在治疗靶点的关键分子。 方法:本研究整合批量转录组和单细胞转录组,从多个层面分析和鉴定与MAAD相关的关键基因。随后,采用多种机器学习方法构建与MAAD相关的预后模型,并分析不同模式下免疫细胞浸润、肿瘤异质性、肿瘤突变负担及潜在通路变化。最后,鉴定关键分子进行实验验证。 结果:我们成功构建了基于关键MAAD相关分子的预后模型和列线图。与高风险患者相比,低风险患者有显著的生存获益。此外,与低风险组相比,高风险组对免疫治疗的反应较差,肿瘤异质性更强。进一步研究发现,敲低与MAAD相关的基因LSM8后,结直肠癌细胞系的恶性特征明显减轻,提示LSM8可能成为潜在的治疗靶点。 结论:与MAAD相关的基因LSM8可能参与CRC的进展,有望成为治疗干预的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/a7bf2bb67af2/fonc-15-1565090-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/0a095db74f8a/fonc-15-1565090-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/b805980ae47e/fonc-15-1565090-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/b170e275bd41/fonc-15-1565090-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/4b70b6ecc478/fonc-15-1565090-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/9e50dd6d898a/fonc-15-1565090-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/02bf4214e451/fonc-15-1565090-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/1f073ea175ec/fonc-15-1565090-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/52e55331f061/fonc-15-1565090-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/a7bf2bb67af2/fonc-15-1565090-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/0a095db74f8a/fonc-15-1565090-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/b805980ae47e/fonc-15-1565090-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/b170e275bd41/fonc-15-1565090-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/4b70b6ecc478/fonc-15-1565090-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/9e50dd6d898a/fonc-15-1565090-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/02bf4214e451/fonc-15-1565090-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/1f073ea175ec/fonc-15-1565090-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/52e55331f061/fonc-15-1565090-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f384/11978647/a7bf2bb67af2/fonc-15-1565090-g009.jpg

相似文献

[1]
Integrating multi-omics and machine learning methods reveals the metabolism of amino acids and derivatives-related signature in colorectal cancer.

Front Oncol. 2025-3-26

[2]
Integrative analysis of semaphorins family genes in colorectal cancer: implications for prognosis and immunotherapy.

Front Immunol. 2025-3-4

[3]
Combining multi-omics analysis with machine learning to uncover novel molecular subtypes, prognostic markers, and insights into immunotherapy for melanoma.

BMC Cancer. 2025-4-7

[4]
Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework.

EPMA J. 2023-5-31

[5]
Integration of machine learning for developing a prognostic signature related to programmed cell death in colorectal cancer.

Environ Toxicol. 2024-5

[6]
A novel gene signature for predicting outcome in colorectal cancer patients based on tumor cell-endothelial cell interaction via single-cell sequencing and machine learning.

Heliyon. 2025-1-24

[7]
Multi-omics identification of a polyamine metabolism related signature for hepatocellular carcinoma and revealing tumor microenvironment characteristics.

Front Immunol. 2025-4-22

[8]
Developing a machine learning-based prognosis and immunotherapeutic response signature in colorectal cancer: insights from ferroptosis, fatty acid dynamics, and the tumor microenvironment.

Front Immunol. 2024

[9]
Integrating transcriptomics and scPagwas analysis predicts naïve CD4 T cell-related gene DRAM2 as a potential biomarker and therapeutic target for colorectal cancer.

BMC Cancer. 2025-2-21

[10]
Targeting nucleotide metabolic pathways in colorectal cancer by integrating scRNA-seq, spatial transcriptome, and bulk RNA-seq data.

Funct Integr Genomics. 2024-4-10

本文引用的文献

[1]
CD8 T cell exhaustion in the tumor microenvironment of breast cancer.

Front Immunol. 2024-12-9

[2]
Immune-related diagnostic markers for benign prostatic hyperplasia and their potential as drug targets.

Front Immunol. 2024-12-5

[3]
Knockdown of integrin β1 inhibits proliferation and promotes apoptosis in bladder cancer cells.

Biofactors. 2025

[4]
Biomarkers in Colorectal Cancer: Actual and Future Perspectives.

Int J Mol Sci. 2024-10-27

[5]
Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment.

Heliyon. 2024-8-30

[6]
A systematic review of the gut microbiome, metabolites, and multi-omics biomarkers across the colorectal cancer care continuum.

Benef Microbes. 2024-8-14

[7]
Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy.

Biochim Biophys Acta Rev Cancer. 2024-9

[8]
Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy.

Autoimmun Rev. 2024-6

[9]
A developmental constraint model of cancer cell states and tumor heterogeneity.

Cell. 2024-6-6

[10]
Mechanisms of metastatic colorectal cancer.

Nat Rev Gastroenterol Hepatol. 2024-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索