Suppr超能文献

结直肠癌肝转移药物研发中预后预测和药物反应建模的综合框架。

An integrated framework for prognosis prediction and drug response modeling in colorectal liver metastasis drug discovery.

机构信息

School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.

School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.

出版信息

J Transl Med. 2024 Mar 30;22(1):321. doi: 10.1186/s12967-024-05127-5.

Abstract

BACKGROUND

Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM.

METHODS

This study developed two liver metastasis-associated prognostic signatures based on differentially expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in vivo experiments were performed to verify the efficacy of these compounds.

RESULTS

These two prognostic models exhibited superior performance compared to previously reported ones. Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver metastasis mouse model.

CONCLUSIONS

This study highlights the significance of developing specialized prognostication approaches and investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response model provides a new drug discovery strategy for translational medicine in precision oncology.

摘要

背景

结直肠癌(CRC)是全球第三大常见癌症,肝转移(CRLM)是其主要致死原因。因此,发现 CRC 的新型预后生物标志物和治疗药物至关重要。

方法

本研究基于 CRLM 中的差异表达基因(DEGs)开发了两个肝转移相关预后签名。此外,我们还使用了一个基于药物敏感性数据库的可解释深度学习模型,以鉴定高危 CRLM 患者的潜在治疗药物。随后,进行了体外和体内实验来验证这些化合物的疗效。

结果

这两个预后模型的表现优于之前报道的模型。BCL-2 抑制剂 Obatoclax 在由预后模型分类的高风险和低风险组之间表现出显著的差异反应,并在 Transwell 测定和 CT26 结直肠肝转移小鼠模型中均显示出显著的疗效。

结论

本研究强调了为 CRLM 患者开发专门的预后方法和研究有效治疗药物的重要性。深度学习药物反应模型的应用为精准肿瘤学中的转化医学提供了新的药物发现策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b446/10981831/e6c2d8d4032d/12967_2024_5127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验