Suppr超能文献

氢取代石墨二炔中金属调谐的乙炔键增强电化学氧还原

Metal-Tuned Acetylene Linkages in Hydrogen Substituted Graphdiyne Boosting the Electrochemical Oxygen Reduction.

作者信息

Guo Ying, Liu Jianwen, Yang Qi, Ma Longtao, Zhao Yuwei, Huang Zhaodong, Li Xinliang, Dong Binbin, Fu Xian-Zhu, Zhi Chunyi

机构信息

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.

College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, China.

出版信息

Small. 2020 Mar;16(10):e1907341. doi: 10.1002/smll.201907341. Epub 2020 Feb 12.

Abstract

Different from graphene with the highly stable sp -hybridized carbon atoms, which shows poor controllability for constructing strong interactions between graphene and guest metal, graphdiyne has a great potential to be engineered because its high-reactive acetylene linkages can effectively chelate metal atoms. Herein, a hydrogen-substituted graphdiyne (HsGDY) supported metal catalyst system through in situ growth of Cu Pd nanoalloys on HsGDY surface is developed. Benefiting from the strong metal-chelating ability of acetylenic linkages, Cu Pd nanoalloys are intimately anchored on HsGDY surface that accordingly creates a strong interaction. The optimal HsGDY-supported Cu Pd catalyst (HsGDY/Cu Pd-750) exhibits outstanding electrocatalytic activity for the oxygen reduction reaction (ORR) with an admirable half-wave potential (0.870 V), an impressive kinetic current density at 0.75 V (57.7 mA cm ) and long-term stability, far outperforming those of the state-of-the-art Pt/C catalyst (0.859 V and 15.8 mA cm ). This excellent performance is further highlighted by the Zn-air battery using HsGDY/Cu Pd-750 as cathode. Density function theory calculations show that such electrocatalytic performance is attributed to the strong interaction between Cu Pd and CC bonds of HsGDY, which causes the asymmetric electron distribution on two carbon atoms of CC bond and the strong charge transfer to weaken the shoulder-to-shoulder π conjugation, eventually facilitating the ORR process.

摘要

与具有高度稳定的sp杂化碳原子的石墨烯不同,石墨烯在构建石墨烯与客体金属之间的强相互作用方面表现出较差的可控性,而石墨炔具有很大的工程应用潜力,因为其高反应性的乙炔键可以有效地螯合金属原子。在此,通过在HsGDY表面原位生长Cu Pd纳米合金,开发了一种氢取代石墨炔(HsGDY)负载的金属催化剂体系。受益于炔键强大的金属螯合能力,Cu Pd纳米合金紧密地锚定在HsGDY表面,从而产生了强相互作用。最佳的HsGDY负载Cu Pd催化剂(HsGDY/Cu Pd-750)对氧还原反应(ORR)表现出出色的电催化活性,具有令人钦佩的半波电位(0.870 V)、在0.75 V时令人印象深刻的动力学电流密度(57.7 mA cm)和长期稳定性,远远优于目前最先进的Pt/C催化剂(0.859 V和15.8 mA cm)。使用HsGDY/Cu Pd-750作为阴极的锌空气电池进一步突出了这种优异性能。密度泛函理论计算表明,这种电催化性能归因于Cu Pd与HsGDY的CC键之间的强相互作用,这导致CC键的两个碳原子上电子分布不对称以及强烈的电荷转移,从而削弱了肩并肩的π共轭,最终促进了ORR过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验