College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China.
Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae129.
Quality control in quantitative proteomics is a persistent challenge, particularly in identifying and managing outliers. Unsupervised learning models, which rely on data structure rather than predefined labels, offer potential solutions. However, without clear labels, their effectiveness might be compromised. Single models are susceptible to the randomness of parameters and initialization, which can result in a high rate of false positives. Ensemble models, on the other hand, have shown capabilities in effectively mitigating the impacts of such randomness and assisting in accurately detecting true outliers. Therefore, we introduced SEAOP, a Python toolbox that utilizes an ensemble mechanism by integrating multi-round data management and a statistics-based decision pipeline with multiple models. Specifically, SEAOP uses multi-round resampling to create diverse sub-data spaces and employs outlier detection methods to identify candidate outliers in each space. Candidates are then aggregated as confirmed outliers via a chi-square test, adhering to a 95% confidence level, to ensure the precision of the unsupervised approaches. Additionally, SEAOP introduces a visualization strategy, specifically designed to intuitively and effectively display the distribution of both outlier and non-outlier samples. Optimal hyperparameter models of SEAOP for outlier detection were identified by using a gradient-simulated standard dataset and Mann-Kendall trend test. The performance of the SEAOP toolbox was evaluated using three experimental datasets, confirming its reliability and accuracy in handling quantitative proteomics.
定量蛋白质组学中的质量控制是一个持续存在的挑战,特别是在识别和管理离群值方面。无监督学习模型依赖于数据结构而不是预定义的标签,为解决这些问题提供了潜在的解决方案。然而,没有明确的标签,它们的有效性可能会受到影响。单个模型容易受到参数和初始化随机性的影响,这可能导致误报率很高。另一方面,集成模型已经证明了在有效减轻这种随机性的影响和帮助准确检测真实离群值方面的能力。因此,我们引入了 SEAOP,这是一个 Python 工具包,利用集成机制,将多轮数据管理和基于统计的决策管道与多个模型集成在一起。具体来说,SEAOP 使用多轮重采样来创建多样化的子数据空间,并使用异常值检测方法在每个空间中识别候选异常值。然后,通过卡方检验将候选值聚合为确认异常值,置信水平为 95%,以确保无监督方法的精度。此外,SEAOP 引入了一种可视化策略,旨在直观有效地显示异常值和非异常值样本的分布。通过使用梯度模拟标准数据集和曼-肯德尔趋势检验,确定了 SEAOP 用于异常值检测的最佳超参数模型。SEAOP 工具箱的性能通过三个实验数据集进行评估,证实了其在处理定量蛋白质组学方面的可靠性和准确性。