Huang Jinze, Li Yimin, Meng Bo, Zhang Yong, Wei Yaoguang, Dai Xinhua, An Dong, Zhao Yang, Fang Xiang
Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China.
College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.
iScience. 2024 Nov 12;27(12):111362. doi: 10.1016/j.isci.2024.111362. eCollection 2024 Dec 20.
Proteomics is crucial in clinical research, yet the clinical application of proteomic data remains challenging. Transforming proteomic mass spectrometry (MS) data into red, green, and blue color (MS-RGB) image formats and applying deep learning (DL) techniques has shown great potential to enhance analysis efficiency. However, current DL models often fail to extract subtle, crucial features from MS-RGB data. To address this, we developed ProteoNet, a deep learning framework that refines MS-RGB data analysis. ProteoNet incorporates semantic partitioning, adaptive average pooling, and weighted factors into the Convolutional Neural Network (CNN) model, thus enhancing data analysis accuracy. Our experiments with proteomics data from urine, blood, and tissue samples related to liver, kidney, and thyroid diseases demonstrate that ProteoNet outperforms existing models in accuracy. ProteoNet also provides a direct conversion method for MS-RGB data, enabling a seamless workflow. Moreover, its compatibility with various CNN architectures, including lightweight models like MobileNetV2, underscores its scalability and clinical potential.
蛋白质组学在临床研究中至关重要,然而蛋白质组学数据的临床应用仍然具有挑战性。将蛋白质组学质谱(MS)数据转换为红、绿、蓝颜色(MS-RGB)图像格式并应用深度学习(DL)技术已显示出提高分析效率的巨大潜力。然而,当前的深度学习模型往往无法从MS-RGB数据中提取细微但关键的特征。为了解决这个问题,我们开发了ProteoNet,这是一个用于优化MS-RGB数据分析的深度学习框架。ProteoNet将语义分割、自适应平均池化和加权因子纳入卷积神经网络(CNN)模型,从而提高了数据分析的准确性。我们对来自尿液、血液以及与肝脏、肾脏和甲状腺疾病相关的组织样本的蛋白质组学数据进行的实验表明,ProteoNet在准确性方面优于现有模型。ProteoNet还为MS-RGB数据提供了一种直接转换方法,实现了无缝工作流程。此外,它与各种CNN架构(包括像MobileNetV2这样的轻量级模型)的兼容性突出了其可扩展性和临床潜力。