Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.
Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.
Cell Biochem Biophys. 2024 Jun;82(2):1027-1042. doi: 10.1007/s12013-024-01256-2. Epub 2024 Apr 1.
Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (FeO) and chitosan-coated iron oxide nanoparticles (FeO-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with FeO-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. FeO showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas FeO exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced FeO-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that FeO-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and FeO-treated cells, FeO-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of FeO-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of FeO-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.
肝细胞癌(HCC)是全球第五大常见癌症,受多种临床病理因素影响,包括病毒感染和遗传异常。本研究描述了氧化铁纳米颗粒(FeO)和壳聚糖包覆氧化铁纳米颗粒(FeO-CS)的合成、表征及其对 HCC 的生物学功效。分析方法证实了两种纳米颗粒的成功合成,FeO-CS 表现出更小、均匀的球形形态以及明显的表面和磁性,这归因于其壳聚糖涂层。使用各种技术对制备的材料进行了分析,并研究了它们对 HCC 的 HepG2 癌细胞系的潜在细胞毒性作用。在针对 HepG2 细胞的生物学评估中,观察到细胞毒性有显著差异。FeO 表现出适度的抗癌活性,IC50 为 383.71±23.9µg/mL,而 FeO 表现出显著增强的细胞毒性作用,IC50 低至 39.15±39.2µg/mL。彗星试验进一步证明了 FeO-CS 具有强大的 DNA 损伤作用,展示了其通过广泛的 DNA 片段化诱导细胞凋亡的卓越能力。我们的研究结果整合了生化分析,揭示了 FeO-CS 不仅诱导显著的 DNA 损伤,而且明显改变氧化应激标志物。与对照和 FeO 处理的细胞相比,FeO-CS 暴露显著增加氧化应激标志物的水平:超氧化物歧化酶(SOD)增加到 192.07 U/ml,过氧化氢酶(CAT)降低到 0.03 U/L,谷胱甘肽过氧化物酶(GPx)急剧升高至 18.76 U/gT,丙二醛(MDA)水平升高至 30.33 nmol/gT。这些结果强调了 FeO-CS 纳米颗粒不仅在诱导有利于癌细胞凋亡的显著 DNA 损伤方面具有潜力,而且在改变酶活性和氧化应激标志物方面具有潜力,这表明其可能具有双重作用机制,这可能是其在癌症治疗中具有治疗优势的基础。我们的研究结果主张进一步探索 FeO-CS 纳米颗粒在抗癌药物开发中的应用,强调其触发氧化应激和增强抗氧化防御机制的能力。
Int J Mol Sci. 2021-12-4
Int J Biol Macromol. 2021-2-1
Antioxidants (Basel). 2020-6-2
Oxid Med Cell Longev. 2019-11-11