文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过评估磁性氧化铁纳米粒子和壳聚糖对肝癌细胞(HCC)的细胞毒性和遗传毒性作用来提高生物相容性。

Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC).

机构信息

Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt.

Physics Department, Faculty of Science, Tanta University, Tanta, Egypt.

出版信息

Cell Biochem Biophys. 2024 Jun;82(2):1027-1042. doi: 10.1007/s12013-024-01256-2. Epub 2024 Apr 1.


DOI:10.1007/s12013-024-01256-2
PMID:38558242
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11344728/
Abstract

Hepatocellular carcinoma (HCC), the fifth most prevalent cancer worldwide, is influenced by a myriad of clinic-pathological factors, including viral infections and genetic abnormalities. This study delineates the synthesis, characterization, and the biological efficacy of iron oxide nanoparticles (FeO) and chitosan-coated iron oxide nanoparticles (FeO-CS) against HCC. Analytical methods confirmed the successful synthesis of both nanoparticles, with FeO-CS demonstrating a smaller, uniform spherical morphology and distinct surface and magnetic properties attributable to its chitosan coating. The prepared materials were analyzed using various techniques, and their potential cytotoxic effects on HepG2 cancer cells line for HCC were investigated. In biological evaluations against HepG2 cells, a notable distinction in cytotoxicity was observed. FeO showed modest anticancer activity with an IC50 of 383.71 ± 23.9 µg/mL, whereas FeO exhibited a significantly enhanced cytotoxic effect, with a much lower IC50 of 39.15 ± 39.2 µg/mL. The Comet assay further evidenced FeO-CS potent DNA damaging effect, showcasing its superior ability to induce apoptosis through extensive DNA fragmentation. Biochemical analyses integrated into our results reveal that FeO-CS not only induces significant DNA damage but also markedly alters oxidative stress markers. Compared to control and FeO-treated cells, FeO-CS exposure significantly elevated levels of oxidative stress markers: superoxide dismutase (SOD) increased to 192.07 U/ml, catalase (CAT) decreased to 0.03 U/L, glutathione peroxidase (GPx) rose dramatically to 18.76 U/gT, and malondialdehyde (MDA) levels heightened to 30.33 nmol/gT. These results underscore the potential of FeO-CS nanoparticles not only in inducing significant DNA damage conducive to cancer cell apoptosis but also in altering enzymatic activities and oxidative stress markers, suggesting a dual mechanism of action that may underpin their therapeutic advantage in cancer treatment. Our findings advocate for the further exploration of FeO-CS nanoparticles in the development of anticancer drugs, emphasizing their capability to trigger oxidative stress and enhance antioxidant defense mechanisms.

摘要

肝细胞癌(HCC)是全球第五大常见癌症,受多种临床病理因素影响,包括病毒感染和遗传异常。本研究描述了氧化铁纳米颗粒(FeO)和壳聚糖包覆氧化铁纳米颗粒(FeO-CS)的合成、表征及其对 HCC 的生物学功效。分析方法证实了两种纳米颗粒的成功合成,FeO-CS 表现出更小、均匀的球形形态以及明显的表面和磁性,这归因于其壳聚糖涂层。使用各种技术对制备的材料进行了分析,并研究了它们对 HCC 的 HepG2 癌细胞系的潜在细胞毒性作用。在针对 HepG2 细胞的生物学评估中,观察到细胞毒性有显著差异。FeO 表现出适度的抗癌活性,IC50 为 383.71±23.9µg/mL,而 FeO 表现出显著增强的细胞毒性作用,IC50 低至 39.15±39.2µg/mL。彗星试验进一步证明了 FeO-CS 具有强大的 DNA 损伤作用,展示了其通过广泛的 DNA 片段化诱导细胞凋亡的卓越能力。我们的研究结果整合了生化分析,揭示了 FeO-CS 不仅诱导显著的 DNA 损伤,而且明显改变氧化应激标志物。与对照和 FeO 处理的细胞相比,FeO-CS 暴露显著增加氧化应激标志物的水平:超氧化物歧化酶(SOD)增加到 192.07 U/ml,过氧化氢酶(CAT)降低到 0.03 U/L,谷胱甘肽过氧化物酶(GPx)急剧升高至 18.76 U/gT,丙二醛(MDA)水平升高至 30.33 nmol/gT。这些结果强调了 FeO-CS 纳米颗粒不仅在诱导有利于癌细胞凋亡的显著 DNA 损伤方面具有潜力,而且在改变酶活性和氧化应激标志物方面具有潜力,这表明其可能具有双重作用机制,这可能是其在癌症治疗中具有治疗优势的基础。我们的研究结果主张进一步探索 FeO-CS 纳米颗粒在抗癌药物开发中的应用,强调其触发氧化应激和增强抗氧化防御机制的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/4edec8c0b719/12013_2024_1256_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/57b7cfa4618f/12013_2024_1256_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/14d8f00dbefa/12013_2024_1256_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/6b029af57d4e/12013_2024_1256_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/9366885d44c9/12013_2024_1256_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/e0de926d2a4a/12013_2024_1256_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/e3545e054965/12013_2024_1256_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/cf103aab97eb/12013_2024_1256_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/7e08df32ef15/12013_2024_1256_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/887bdfda3291/12013_2024_1256_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/85ec9b0e0a03/12013_2024_1256_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/ebc09abe5963/12013_2024_1256_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/9e31845066f7/12013_2024_1256_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/4edec8c0b719/12013_2024_1256_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/57b7cfa4618f/12013_2024_1256_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/14d8f00dbefa/12013_2024_1256_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/6b029af57d4e/12013_2024_1256_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/9366885d44c9/12013_2024_1256_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/e0de926d2a4a/12013_2024_1256_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/e3545e054965/12013_2024_1256_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/cf103aab97eb/12013_2024_1256_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/7e08df32ef15/12013_2024_1256_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/887bdfda3291/12013_2024_1256_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/85ec9b0e0a03/12013_2024_1256_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/ebc09abe5963/12013_2024_1256_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/9e31845066f7/12013_2024_1256_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f096/11344728/4edec8c0b719/12013_2024_1256_Fig13_HTML.jpg

相似文献

[1]
Enhanced Biocompatibility by Evaluating the Cytotoxic and Genotoxic Effects of Magnetic Iron Oxide Nanoparticles and Chitosan on Hepatocellular Carcinoma Cells (HCC).

Cell Biochem Biophys. 2024-6

[2]
Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells.

Nanoscale. 2015-2-7

[3]
Anticancer therapeutic potential of multimodal targeting agent- "phosphorylated galactosylated chitosan coated magnetic nanoparticles" against N-nitrosodiethylamine-induced hepatocellular carcinoma.

Drug Deliv Transl Res. 2025-3

[4]
Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells.

Int J Nanomedicine. 2013-1-8

[5]
Antitumor Activity of Chitosan-Coated Iron Oxide Nanocomposite Against Hepatocellular Carcinoma in Animal Models.

Biol Trace Elem Res. 2023-3

[6]
Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein.

Amino Acids. 2025-1-25

[7]
Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma.

Free Radic Biol Med. 2017-9-8

[8]
Troxerutin with copper generates oxidative stress in cancer cells: Its possible chemotherapeutic mechanism against hepatocellular carcinoma.

J Cell Physiol. 2018-3

[9]
Chitosan Nanoparticles Alleviated the Adverse Effects of Sildenafil on the Oxidative Stress Markers and Antioxidant Enzyme Activities in Rats.

Oxid Med Cell Longev. 2023

[10]
Improved antitumor activity and reduced cardiotoxicity of epirubicin using hepatocyte-targeted nanoparticles combined with tocotrienols against hepatocellular carcinoma in mice.

Eur J Pharm Biopharm. 2014-9

引用本文的文献

[1]
Enhancing Photodynamic Therapy through Magnetic Targeting: A Biochemical Perspective.

ACS Omega. 2025-5-19

[2]
Green synthesis and characterization of iron nanoparticles synthesized from bioflocculant for wastewater treatment: A review.

Biotechnol Notes. 2024-12-14

[3]
Influence of Physicochemical Properties of Iron Oxide Nanoparticles on Their Antibacterial Activity.

ACS Omega. 2024-7-25

本文引用的文献

[1]
Novel palladium(II) and Zinc(II) Schiff base complexes: Synthesis, biophysical studies, and anticancer activity investigation.

J Trace Elem Med Biol. 2023-9

[2]
Effects of High-Intensity Anaerobic Exercise on the Scavenging Activity of Various Reactive Oxygen Species and Free Radicals in Athletes.

Nutrients. 2023-1-1

[3]
The Curious Case of the HepG2 Cell Line: 40 Years of Expertise.

Int J Mol Sci. 2021-12-4

[4]
Chitosan applications in studying and managing osteosarcoma.

Int J Biol Macromol. 2021-2-1

[5]
Nanostructured Chitosan/Maghemite Composites Thin Film for Potential Optical Detection of Mercury Ion by Surface Plasmon Resonance Investigation.

Polymers (Basel). 2020-7-4

[6]
An Update on Mitochondrial Reactive Oxygen Species Production.

Antioxidants (Basel). 2020-6-2

[7]
ROS-Responsive Chitosan Coated Magnetic Iron Oxide Nanoparticles as Potential Vehicles for Targeted Drug Delivery in Cancer Therapy.

Int J Nanomedicine. 2020-5-12

[8]
The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage.

Int J Toxicol. 2020

[9]
Investigation of Cytotoxicity, Apoptosis, and Oxidative Stress Response of FeO-RGO Nanocomposites in Human Liver HepG2 cells.

Materials (Basel). 2020-2-2

[10]
Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases.

Oxid Med Cell Longev. 2019-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索