Centre for Forest Conservation Genetics and Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
Glob Chang Biol. 2024 Apr;30(4):e17227. doi: 10.1111/gcb.17227.
Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GF) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against 2- and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GF and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.
方法利用基因组信息预测潜在的人口对气候变化或新环境的适应不良,这在日益普遍,然而模型验证的缺乏对将其纳入管理和政策制定构成了严重障碍。在这里,我们比较了两种方法——梯度森林(GF)和不适应风险(RONA)——从 35 到 39 个针叶树分类群的 35 个种群的外显子捕获池-seq 数据中得出的适应不良估计的验证,这两个分类群包括两种道格拉斯冷杉品种和杰克松。我们评估了这些算法对输入基因座来源的敏感性(从基因型-环境关联(GEA)中选择的标记或随机选择的标记)。我们将这些方法与在独立移植实验中测量的 2 年和 52 年的生长和死亡率进行了验证。总体而言,我们发现这两种方法通常比气候或地理距离更能更好地预测移植性能。我们还发现,即使使用 GEA 候选者,GF 和 RONA 模型的性能也不会得到改善。即使有了有希望的验证结果,模型对未来气候的预测变化也使得难以使用这两种方法中的任何一种来识别最适应不良的种群。我们的工作提高了对这些方法的敏感性和适用性的理解,并讨论了它们未来使用的建议。