Suppr超能文献

群体结构限制了基因组数据在预测林木表型和管理遗传资源方面的应用。

Population structure limits the use of genomic data for predicting phenotypes and managing genetic resources in forest trees.

作者信息

Slavov Gancho T, Macaya-Sanz David, DiFazio Stephen P, Howe Glenn T

机构信息

Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, United Kingdom.

Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2425691122. doi: 10.1073/pnas.2425691122. Epub 2025 Jun 25.

Abstract

There is overwhelming evidence that forest trees are locally adapted to climate. Thus, genecological models based on population phenotypes have been used to measure local adaptation, infer genetic maladaptation to climate, and guide assisted migration. However, instead of phenotypes, there is increasing interest in using genomic data for gene resource management. We used whole-genome resequencing and common-garden experiments to understand the genetic architecture of adaptive traits in black cottonwood. We studied the potential of using genome-wide association studies (GWAS) and genomic prediction to detect causal loci, identify climate-adapted phenotypes, and inform gene resource management. We analyzed population structure by partitioning phenotypic and genomic (single-nucleotide polymorphism) variation among 840 genotypes collected from 91 stands along 16 rivers. Most phenotypic variation (60 to 81%) occurred among populations and was strongly associated with climate. Population phenotypes were predicted well using genomic data (e.g., predictive ability > 0.9) but almost as well using climate or geography ( > 0.8). In contrast, genomic prediction within populations was poor ( < 0.2). We identified many GWAS associations among populations, but most appeared to be spurious based on pooled within-population analyses. Hierarchical partitioning of linkage disequilibrium and haplotype sharing suggested that within-population genomic prediction and GWAS were poor because allele frequencies of causal loci and linked markers differed among populations. Given the urgent need to conserve natural populations and ecosystems, our results suggest that climate variables alone can be used to predict population phenotypes, delineate seed zones and deployment zones, and guide assisted migration.

摘要

有压倒性的证据表明,林木在当地适应了气候。因此,基于种群表型的遗传生态模型已被用于衡量当地适应性、推断对气候的遗传不适应,并指导辅助迁移。然而,人们越来越倾向于使用基因组数据而非表型数据进行基因资源管理。我们利用全基因组重测序和共同园实验来了解黑杨适应性性状的遗传结构。我们研究了利用全基因组关联研究(GWAS)和基因组预测来检测因果位点、识别适应气候的表型以及为基因资源管理提供信息的潜力。我们通过对从16条河流沿线91个林分收集的840个基因型的表型和基因组(单核苷酸多态性)变异进行划分,分析了种群结构。大多数表型变异(60%至81%)发生在种群之间,并且与气候密切相关。利用基因组数据可以很好地预测种群表型(例如,预测能力>0.9),但利用气候或地理数据预测效果也几乎同样好(>0.8)。相比之下,种群内的基因组预测效果较差(<0.2)。我们在种群间鉴定出了许多GWAS关联,但基于种群内汇总分析,大多数关联似乎是虚假的。连锁不平衡和单倍型共享的层次划分表明,种群内基因组预测和GWAS效果较差是因为因果位点和连锁标记的等位基因频率在不同种群间存在差异。鉴于迫切需要保护自然种群和生态系统,我们的研究结果表明,仅气候变量就可用于预测种群表型、划定种子区和部署区,并指导辅助迁移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e65e/12232740/79bb2df3d885/pnas.2425691122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验