Suppr超能文献

利用基因组数据预测对新环境适应不良的准确性。

The accuracy of predicting maladaptation to new environments with genomic data.

作者信息

Lind Brandon M, Lotterhos Katie E

机构信息

Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, Massachusetts, USA.

出版信息

Mol Ecol Resour. 2025 May;25(4):e14008. doi: 10.1111/1755-0998.14008. Epub 2024 Aug 30.

Abstract

Rapid environmental change poses unprecedented challenges to species persistence. To understand the extent that continued change could have, genomic offset methods have been used to forecast maladaptation of natural populations to future environmental change. However, while their use has become increasingly common, little is known regarding their predictive performance across a wide array of realistic and challenging scenarios. Here, we evaluate the performance of currently available offset methods (gradientForest, the Risk-Of-Non-Adaptedness, redundancy analysis with and without structure correction and LFMM2) using an extensive set of simulated data sets that vary demography, adaptive architecture and the number and spatial patterns of adaptive environments. For each data set, we train models using either all, adaptive or neutral marker sets and evaluate performance using in silico common gardens by correlating known fitness with projected offset. Using over 4,849,600 of such evaluations, we find that (1) method performance is largely due to the degree of local adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal performance advantages, (3) performance within the species range is variable across gardens and declines when offset models are trained using additional non-adaptive environments and (4) despite (1) performance declines more rapidly in globally novel climates (i.e. a climate without an analogue within the species range) for metapopulations with greater LA than lesser LA. We discuss the implications of these results for management, assisted gene flow and assisted migration.

摘要

快速的环境变化给物种的存续带来了前所未有的挑战。为了了解持续变化可能产生的影响程度,基因组偏移方法已被用于预测自然种群对未来环境变化的不适应性。然而,尽管它们的使用越来越普遍,但对于它们在一系列现实且具有挑战性的情景中的预测性能却知之甚少。在这里,我们使用大量模拟数据集评估了当前可用的偏移方法(梯度森林、非适应性风险、有无结构校正的冗余分析以及LFMM2)的性能,这些数据集在种群统计学、适应性结构以及适应性环境的数量和空间模式方面存在差异。对于每个数据集,我们使用全部、适应性或中性标记集训练模型,并通过将已知适应性与预测偏移相关联,在计算机模拟的共同花园中评估性能。通过超过4,849,600次这样的评估,我们发现:(1)方法性能在很大程度上取决于整个集合种群的局部适应程度(LA);(2)适应性标记集提供的性能优势最小;(3)物种范围内的性能在不同花园中存在差异,并且当使用额外的非适应性环境训练偏移模型时性能会下降;(4)尽管(1),但对于LA较大的集合种群,在全球全新气候(即物种范围内没有类似物的气候)中性能下降得更快。我们讨论了这些结果对管理、辅助基因流动和辅助迁移的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验