Suppr超能文献

利用卫生行政数据开发并验证用于对心血管死亡原因进行分类的模型。

Development and validation of a model to categorize cardiovascular cause of death using health administrative data.

作者信息

Patel Sagar, Thompson Wade, Sivaswamy Atul, Khan Anam, Ferreira-Legere Laura, Lee Douglas S, Abdel-Qadir Husam, Jackevicius Cynthia, Goodman Shaun, Farkouh Michael E, Tu Karen, Kapral Moira K, Wijeysundera Harindra C, Tam Derrick, Austin Peter C, Fang Jiming, Ko Dennis T, Udell Jacob A

机构信息

Faculty of Medicine, University of Toronto, Toronto, Canada.

Women's College Research Institute, Toronto, Canada.

出版信息

Am Heart J Plus. 2022 Sep 16;22:100207. doi: 10.1016/j.ahjo.2022.100207. eCollection 2022 Oct.

Abstract

STUDY OBJECTIVE

Develop and evaluate a model that uses health administrative data to categorize cardiovascular (CV) cause of death (COD).

DESIGN

Population-based cohort.

SETTING

Ontario, Canada.

PARTICIPANTS

Decedents ≥ 40 years with known COD between 2008 and 2015 in the CANHEART cohort, split into derivation (2008 to 2012; n = 363,778) and validation (2013 to 2015; n = 239,672) cohorts.

MAIN OUTCOME MEASURES

Model performance. COD was categorized as CV or non-CV with ICD-10 codes as the gold standard. We developed a logistic regression model that uses routinely collected healthcare administrative to categorize CV versus non-CV COD. We assessed model discrimination and calibration in the validation cohort.

RESULTS

The strongest predictors for CV COD were history of stroke, history of myocardial infarction, history of heart failure, and CV hospitalization one month before death. In the validation cohort, the c-statistic was 0.80, the sensitivity 0.75 (95 % CI 0.74 to 0.75) and the specificity 0.71 (95 % CI 0.70 to 0.71). In the primary prevention validation sub-cohort, the c-statistic was 0.81, the sensitivity 0.71 (95 % CI 0.70 to 0.71) and the specificity 0.75 (95 % CI 0.75 to 0.75) while in the secondary prevention sub-cohort the c-statistic was 0.74, the sensitivity 0.81 (95 % CI 0.81 to 0.82) and the specificity 0.54 (95 % CI 0.53 to 0.54).

CONCLUSION

Modelling approaches using health administrative data show potential in categorizing CV COD, though further work is necessary before this approach is employed in clinical studies.

摘要

研究目的

开发并评估一种利用卫生管理数据对心血管疾病(CV)死因(COD)进行分类的模型。

设计

基于人群的队列研究。

地点

加拿大安大略省。

参与者

CANHEART队列中2008年至2015年期间已知死因且年龄≥40岁的死者,分为推导队列(2008年至2012年;n = 363,778)和验证队列(2013年至2015年;n = 239,672)。

主要观察指标

模型性能。以ICD - 10编码作为金标准,将死因分为心血管疾病或非心血管疾病。我们开发了一种逻辑回归模型,该模型使用常规收集的医疗保健管理数据对心血管疾病与非心血管疾病死因进行分类。我们在验证队列中评估了模型的辨别力和校准情况。

结果

心血管疾病死因的最强预测因素为中风病史、心肌梗死病史、心力衰竭病史以及死亡前一个月的心血管疾病住院史。在验证队列中,c统计量为0.80,灵敏度为0.75(95%置信区间0.74至0.75),特异度为0.71(95%置信区间0.70至0.71)。在一级预防验证亚队列中,c统计量为0.81,灵敏度为0.71(95%置信区间0.70至0.71),特异度为0.75(95%置信区间0.75至0.75);而在二级预防亚队列中,c统计量为0.74,灵敏度为0.81(95%置信区间0.81至0.82),特异度为0.54(95%置信区间0.53至0.5)。

结论

使用卫生管理数据的建模方法在对心血管疾病死因进行分类方面显示出潜力,不过在将该方法应用于临床研究之前,还需要进一步开展工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15f0/10978408/9b5c9623f46f/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验