McCallum Sarah, Suresh Keshav B, Islam Timothy, Saustad Ann W, Shelest Oksana, Patil Aditya, Lee David, Kwon Brandon, Yenokian Inga, Kawaguchi Riki, Beveridge Connor H, Manchandra Palak, Randolph Caitlin E, Meares Gordon P, Dutta Ranjan, Plummer Jasmine, Knott Simon R V, Chopra Gaurav, Burda Joshua E
bioRxiv. 2024 Mar 17:2024.03.15.585251. doi: 10.1101/2024.03.15.585251.
Spared regions of the damaged central nervous system undergo dynamic remodeling and exhibit a remarkable potential for therapeutic exploitation. Here, lesion-remote astrocytes (LRAs), which interact with viable neurons, glia and neural circuitry, undergo reactive transformations whose molecular and functional properties are poorly understood. Using multiple transcriptional profiling methods, we interrogated LRAs from spared regions of mouse spinal cord following traumatic spinal cord injury (SCI). We show that LRAs acquire a spectrum of molecularly distinct, neuroanatomically restricted reactivity states that evolve after SCI. We identify transcriptionally unique reactive LRAs in degenerating white matter that direct the specification and function of local microglia that clear lipid-rich myelin debris to promote tissue repair. Fueling this LRA functional adaptation is , which encodes for a secreted matricellular protein. Loss of astrocyte CCN1 leads to excessive, aberrant activation of local microglia with (i) abnormal molecular specification, (ii) dysfunctional myelin debris processing, and (iii) impaired lipid metabolism, culminating in blunted debris clearance and attenuated neurological recovery from SCI. -expressing white matter astrocytes are specifically induced by local myelin damage and generated in diverse demyelinating disorders in mouse and human, pointing to their fundamental, evolutionarily conserved role in white matter repair. Our findings show that LRAs assume regionally divergent reactivity states with functional adaptations that are induced by local context-specific triggers and influence disorder outcome. Astrocytes tile the central nervous system (CNS) where they serve vital roles that uphold healthy nervous system function, including regulation of synapse development, buffering of neurotransmitters and ions, and provision of metabolic substrates . In response to diverse CNS insults, astrocytes exhibit disorder-context specific transformations that are collectively referred to as reactivity . The characteristics of regionally and molecularly distinct reactivity states are incompletely understood. The mechanisms through which distinct reactivity states arise, how they evolve or resolve over time, and their consequences for local cell function and CNS disorder progression remain enigmatic. Immediately adjacent to CNS lesions, border-forming astrocytes (BFAs) undergo transcriptional reprogramming and proliferation to form a neuroprotective barrier that restricts inflammation and supports axon regeneration . Beyond the lesion, spared but dynamic regions of the injured CNS exhibit varying degrees of synaptic circuit remodeling and progressive cellular responses to secondary damage that have profound consequences for neural repair and recovery . Throughout these cytoarchitecturally intact, but injury-reactive regions, lesion-remote astrocytes (LRAs) intermingle with neurons and glia, undergo little to no proliferation, and exhibit varying degrees of cellular hypertrophy . The molecular and functional properties of LRAs remain grossly undefined. Therapeutically harnessing spared regions of the injured CNS will require a clearer understanding of the accompanying cellular and molecular landscape. Here, we leveraged integrative transcriptional profiling methodologies to identify multiple spatiotemporally resolved, molecularly distinct states of LRA reactivity within the injured spinal cord. Computational modeling of LRA-mediated heterotypic cell interactions, astrocyte-specific conditional gene deletion, and multiple mouse models of acute and chronic CNS white matter degeneration were used to interrogate a newly identified white matter degeneration-reactive astrocyte subtype. We define how this reactivity state is induced and its role in governing the molecular and functional specification of local microglia that clear myelin debris from the degenerating white matter to promote repair.
受损中枢神经系统的 spared 区域会经历动态重塑,并展现出显著的治疗开发潜力。在这里,与存活的神经元、神经胶质细胞和神经回路相互作用的损伤远端星形胶质细胞(LRA)会发生反应性转变,但其分子和功能特性却知之甚少。我们使用多种转录谱分析方法,对创伤性脊髓损伤(SCI)后小鼠脊髓 spared 区域的 LRA 进行了研究。我们发现,LRA 会获得一系列分子上不同、神经解剖学上受限的反应性状态,这些状态在 SCI 后会发生演变。我们在退化的白质中鉴定出转录上独特的反应性 LRA,它们指导局部小胶质细胞的特异性和功能,这些小胶质细胞清除富含脂质的髓磷脂碎片以促进组织修复。为这种 LRA 功能适应提供动力的是 ,它编码一种分泌型基质细胞蛋白。星形胶质细胞 CCN1 的缺失会导致局部小胶质细胞过度、异常激活,表现为:(i)分子特异性异常,(ii)髓磷脂碎片处理功能失调,(iii)脂质代谢受损,最终导致碎片清除减弱和 SCI 后的神经恢复减弱。表达 的白质星形胶质细胞是由局部髓磷脂损伤特异性诱导产生的,并在小鼠和人类的多种脱髓鞘疾病中出现,这表明它们在白质修复中具有基本的、进化上保守的作用。我们的研究结果表明,LRA 呈现出区域特异性的反应性状态,其功能适应是由局部上下文特异性触发因素诱导的,并影响疾病结局。星形胶质细胞遍布中枢神经系统(CNS),在维持健康的神经系统功能方面发挥着至关重要的作用,包括调节突触发育、缓冲神经递质和离子以及提供代谢底物 。响应各种 CNS 损伤,星形胶质细胞会表现出疾病背景特异性的转变,这些转变统称为反应性 。区域和分子上不同的反应性状态的特征尚未完全了解。不同反应性状态产生的机制、它们如何随时间演变或消退,以及它们对局部细胞功能和 CNS 疾病进展的影响仍然是个谜。紧邻 CNS 损伤部位,形成边界的星形胶质细胞(BFA)会经历转录重编程和增殖,形成一个神经保护屏障,限制炎症并支持轴突再生 。在损伤部位之外,受损 CNS 的 spared 但动态的区域表现出不同程度的突触回路重塑和对继发性损伤的渐进性细胞反应,这些反应对神经修复和恢复具有深远影响 。在这些细胞结构完整但具有损伤反应的区域中,损伤远端星形胶质细胞(LRA)与神经元和神经胶质细胞混合,几乎不增殖或不增殖,并表现出不同程度的细胞肥大 。LRA 的分子和功能特性仍然非常不清楚。从治疗上利用受损 CNS 的 spared 区域需要更清楚地了解伴随的细胞和分子情况。在这里,我们利用综合转录谱分析方法,在受损脊髓中鉴定出 LRA 反应性的多个时空分辨、分子上不同的状态。通过对 LRA 介导的异型细胞相互作用进行计算建模、星形胶质细胞特异性条件性基因缺失以及多种急性和慢性 CNS 白质退化小鼠模型,来研究一种新鉴定的白质退化反应性星形胶质细胞亚型。我们定义了这种反应性状态是如何被诱导的,以及它在控制局部小胶质细胞的分子和功能特异性方面的作用,这些小胶质细胞从退化的白质中清除髓磷脂碎片以促进修复。