Xu Yang, Fleming Stephen, Tegtmeyer Matthew, McCarroll Steven A, Babadi Mehrtash
Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA.
Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA.
bioRxiv. 2024 Mar 16:2024.03.14.585078. doi: 10.1101/2024.03.14.585078.
Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow uncovering cell-state-specific responses to perturbations, a crucial aspect in unraveling the intricate molecular mechanisms governing cellular behavior and potentially discovering novel regulatory pathways and therapeutic targets. However, prevailing computational methods predominantly focus on predicting average cellular responses, disregarding the inherent response heterogeneity associated with cell state diversity. In this study, we present CellCap, a deep generative model designed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into a set of transcriptional response programs. These programs are then utilized by each perturbation condition and each cell at varying degrees. The incorporation of specific model design choices, such as dot-product cross-attention between cell states and response programs, along with a linearly-decoded latent space, underlay the interpretation power of CellCap. We evaluate CellCap's model interpretability through multiple simulated scenarios and apply it to two real single-cell perturbation datasets. These datasets feature either heterogeneous cellular populations or a complex experimental setup. Our results demonstrate that CellCap successfully uncovers the relationship between cell state and perturbation response, unveiling novel insights overlooked in previous analyses. The model's interpretability, coupled with its effectiveness in capturing heterogeneous responses, positions CellCap as a valuable tool for advancing our understanding of cellular behaviors in the context of perturbation experiments.
单细胞转录组学与基因和化合物扰动相结合,为探索不同背景下的细胞行为提供了一种强大的方法。此类实验能够揭示细胞状态特异性的扰动反应,这是解开控制细胞行为的复杂分子机制以及潜在发现新的调控途径和治疗靶点的关键方面。然而,现有的计算方法主要侧重于预测平均细胞反应,而忽略了与细胞状态多样性相关的固有反应异质性。在本研究中,我们提出了CellCap,这是一种用于单细胞扰动实验端到端分析的深度生成模型。CellCap在潜在空间中采用稀疏字典学习,将细胞状态特异性的扰动反应解构为一组转录反应程序。然后,每个扰动条件和每个细胞以不同程度利用这些程序。特定模型设计选择的纳入,例如细胞状态和反应程序之间的点积交叉注意力,以及线性解码的潜在空间,构成了CellCap的解释能力基础。我们通过多个模拟场景评估了CellCap的模型可解释性,并将其应用于两个真实的单细胞扰动数据集。这些数据集具有异质细胞群体或复杂的实验设置。我们的结果表明,CellCap成功揭示了细胞状态与扰动反应之间的关系,揭示了先前分析中被忽视的新见解。该模型的可解释性及其在捕获异质反应方面的有效性,使CellCap成为在扰动实验背景下推进我们对细胞行为理解的有价值工具。