使用自然语言处理技术从非结构化电子健康记录中自动提取中风严重程度
Automated Extraction of Stroke Severity from Unstructured Electronic Health Records using Natural Language Processing.
作者信息
Fernandes Marta, Westover M Brandon, Singhal Aneesh B, Zafar Sahar F
机构信息
Department of Neurology, Massachusetts General Hospital (MGH), Boston, Massachusetts, United States.
Department of Neurology, Beth Israel Deaconess Medical Center (BIDMC), Boston, Massachusetts, United States.
出版信息
medRxiv. 2024 Mar 11:2024.03.08.24304011. doi: 10.1101/2024.03.08.24304011.
BACKGROUND
Multi-center electronic health records (EHR) can support quality improvement initiatives and comparative effectiveness research in stroke care. However, limitations of EHR-based research include challenges in abstracting key clinical variables from non-structured data at scale. This is further compounded by missing data. Here we develop a natural language processing (NLP) model that automatically reads EHR notes to determine the NIH stroke scale (NIHSS) score of patients with acute stroke.
METHODS
The study included notes from acute stroke patients (>= 18 years) admitted to the Massachusetts General Hospital (MGH) (2015-2022). The MGH data were divided into training (70%) and hold-out test (30%) sets. A two-stage model was developed to predict the admission NIHSS. A linear model with the least absolute shrinkage and selection operator (LASSO) was trained within the training set. For notes in the test set where the NIHSS was documented, the scores were extracted using regular expressions (stage 1), for notes where NIHSS was not documented, LASSO was used for prediction (stage 2). The reference standard for NIHSS was obtained from Get With The Guidelines Stroke Registry. The two-stage model was tested on the hold-out test set and validated in the MIMIC-III dataset (Medical Information Mart for Intensive Care-MIMIC III 2001-2012) v1.4, using root mean squared error (RMSE) and Spearman correlation (SC).
RESULTS
We included 4,163 patients (MGH = 3,876; MIMIC = 287); average age of 69 [SD 15] years; 53% male, and 72% white. 90% patients had ischemic stroke and 10% hemorrhagic stroke. The two-stage model achieved a RMSE [95% CI] of 3.13 [2.86-3.41] (SC = 0.90 [0.88-0. 91]) in the MGH hold-out test set and 2.01 [1.58-2.38] (SC = 0.96 [0.94-0.97]) in the MIMIC validation set.
CONCLUSIONS
The automatic NLP-based model can enable large-scale stroke severity phenotyping from EHR and therefore support real-world quality improvement and comparative effectiveness studies in stroke.
背景
多中心电子健康记录(EHR)可支持卒中护理的质量改进计划和比较效果研究。然而,基于EHR的研究存在局限性,包括大规模从非结构化数据中提取关键临床变量面临挑战。数据缺失使这一问题更加复杂。在此,我们开发了一种自然语言处理(NLP)模型,该模型可自动读取EHR记录以确定急性卒中患者的美国国立卫生研究院卒中量表(NIHSS)评分。
方法
该研究纳入了麻省总医院(MGH)(2015 - 2022年)收治的急性卒中患者(≥18岁)的记录。MGH数据被分为训练集(70%)和保留测试集(30%)。开发了一个两阶段模型来预测入院时的NIHSS。在训练集内训练了一个带有最小绝对收缩和选择算子(LASSO)的线性模型。对于测试集中记录了NIHSS的记录,使用正则表达式提取评分(第一阶段);对于未记录NIHSS的记录,使用LASSO进行预测(第二阶段)。NIHSS的参考标准来自“遵循指南卒中登记册”。在保留测试集上对两阶段模型进行测试,并在MIMIC - III数据集(重症监护医学信息集市 - MIMIC III 2001 - 2012年)v1.4中进行验证,使用均方根误差(RMSE)和斯皮尔曼相关性(SC)。
结果
我们纳入了4163例患者(MGH = 3876例;MIMIC = 287例);平均年龄69岁[标准差15岁];53%为男性,72%为白人。90%的患者为缺血性卒中,10%为出血性卒中。两阶段模型在MGH保留测试集中的RMSE[95%置信区间]为3.13[2.86 - 3.41](SC = = 0.90[0.88 - 0.91]),在MIMIC验证集中为2.01[1.58 - 2.38](SC = 0.96[0.94 - 0.97])。
结论
基于NLP的自动模型能够从EHR中实现大规模卒中严重程度表型分析,从而支持卒中领域的实际质量改进和比较效果研究。