Suppr超能文献

将金属和石墨可逆地粘附于水凝胶和组织上。

Reversibly Sticking Metals and Graphite to Hydrogels and Tissues.

作者信息

Xu Wenhao, Burni Faraz A, Raghavan Srinivasa R

机构信息

Department of Chemistry & Biochemistry, University of Maryland, College Park, Maryland 20742, United States.

Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States.

出版信息

ACS Cent Sci. 2024 Mar 13;10(3):695-707. doi: 10.1021/acscentsci.3c01593. eCollection 2024 Mar 27.

Abstract

We have discovered that hard, electrical conductors (e.g., metals or graphite) can be adhered to soft, aqueous materials (e.g., hydrogels, fruit, or animal tissue) without the use of an adhesive. The adhesion is induced by a low DC electric field. As an example, when 5 V DC is applied to graphite slabs spanning a tall cylindrical gel of acrylamide (AAm), a strong adhesion develops between the anode (+) and the gel in about 3 min. This adhesion endures after the field is removed, and we term it as or . Depending on the material, adhesion occurs at the anode (+), cathode (-), or both electrodes. In many cases, can be reversed by reapplying the field with reversed polarity. Adhesion via to AAm gels follows the electrochemical series: e.g., it occurs with copper, lead, and tin but not nickel, iron, or zinc. We show that arises via electrochemical reactions that generate chemical bonds between the electrode and the polymers in the gel. can create new hybrid materials, thus enabling applications in robotics, energy storage, and biomedical implants. Interestingly, can even be achieved underwater, where typical adhesives cannot be used.

摘要

我们发现,坚硬的导电体(如金属或石墨)无需使用粘合剂就能粘附在柔软的水性材料(如水凝胶、水果或动物组织)上。这种粘附是由低直流电场诱导产生的。例如,当向横跨高圆柱形丙烯酰胺(AAm)凝胶的石墨板施加5V直流电时,阳极(+)与凝胶之间会在约3分钟内产生强烈的粘附力。在电场移除后,这种粘附力依然存在,我们将其称为 或 。根据材料不同,粘附发生在阳极(+)、阴极(-)或两个电极处。在许多情况下,通过重新施加极性相反的电场可以使 逆转。通过 与AAm凝胶的粘附遵循电化学序列:例如,它会发生在铜、铅和锡上,但不会发生在镍、铁或锌上。我们表明, 是通过在电极与凝胶中的聚合物之间产生化学键的电化学反应产生的。 可以创造新的复合材料,从而在机器人技术、能量存储和生物医学植入物等领域实现应用。有趣的是,即使在无法使用典型粘合剂的水下也能实现 。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7619/10979492/983687476692/oc3c01593_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验