Suppr超能文献

利用自我报告的客观智能手机使用数据检验青少年智能手机普及量表的有效性。

Testing the validity of the smartphone pervasiveness scale for adolescents with self-reported objective smartphone use data.

作者信息

Chakraborty Shobhik, Gui Marco, Gerosa Tiziano, Marciano Laura

机构信息

Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA.

Department of Sociology and Social Research, University of Milano - Bicocca, Milan, Italy.

出版信息

Digit Health. 2024 Mar 29;10:20552076241234744. doi: 10.1177/20552076241234744. eCollection 2024 Jan-Dec.

Abstract

An ongoing and heated scientific debate pertains to the conceptualization and quantification of adolescents' problematic smartphone use (PSU). To address the limitations of existing surveys, the smartphone pervasiveness scale for adolescents (SPS-A) has been designed to measure the subjective frequency of smartphone usage during significant moments within daily routines. Given the weak correlations in prior literature between self-reported PSU metrics and objective use data, this study investigates the relationships between diverse self-reported objective metrics of smartphone engagement-that is duration, frequency, and count of notifications-and the SPS-A scale, employing a cohort of Swiss adolescents ( = 1396; = 15.8, SD= 0.81; 59% female). The findings reveal a substantial correlation between the total objectively measured duration of smartphone engagement and the SPS-A scale ( = .41 for iOS users and  = .42 for Android users). Moreover, a similar trend emerges as users are categorized by their level of objective use, with each category displaying a linear augmentation in smartphone pervasiveness levels. Instead, modest correlations emerge when considering the quantity of device unlocks and notifications. Noteworthy, no gender disparities emerged. These results add to our knowledge about the usefulness of the concept and measurement of smartphone pervasiveness: not only the SPS-A is a valid alternative to scales on "smartphone addiction" to capture non-pathological PSU, but it is also a better predictor of smartphone objective duration of use than self-reported measures. The correlation found between self-reported pervasiveness and actual use is discussed in light of the debate about the relevance of screen time in the study of PSU.

摘要

一场持续且激烈的科学辩论围绕青少年问题智能手机使用(PSU)的概念化和量化展开。为解决现有调查的局限性,设计了青少年智能手机普及量表(SPS - A),以测量日常活动重要时刻的智能手机使用主观频率。鉴于先前文献中自我报告的PSU指标与客观使用数据之间的相关性较弱,本研究调查了智能手机使用的各种自我报告客观指标(即使用时长、频率和通知数量)与SPS - A量表之间的关系,研究对象为一组瑞士青少年(n = 1396;平均年龄 = 15.8岁,标准差 = 0.81;59%为女性)。研究结果显示,客观测量的智能手机使用总时长与SPS - A量表之间存在显著相关性(iOS用户r = 0.41,安卓用户r = 0.42)。此外,按客观使用水平对用户进行分类时也出现了类似趋势,每个类别在智能手机普及程度上都呈线性增加。相反,在考虑设备解锁次数和通知数量时,相关性较弱。值得注意的是,未出现性别差异。这些结果增加了我们对智能手机普及概念及测量有用性的认识:SPS - A不仅是捕捉非病理性PSU的“智能手机成瘾”量表的有效替代方法,而且在预测智能手机客观使用时长方面比自我报告测量方法更好。根据关于PSU研究中屏幕时间相关性的辩论,讨论了自我报告的普及程度与实际使用之间的相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/10981259/04886dbd3eaa/10.1177_20552076241234744-fig1.jpg

相似文献

1
Testing the validity of the smartphone pervasiveness scale for adolescents with self-reported objective smartphone use data.
Digit Health. 2024 Mar 29;10:20552076241234744. doi: 10.1177/20552076241234744. eCollection 2024 Jan-Dec.
2
Duration, frequency, and time distortion: Which is the best predictor of problematic smartphone use in adolescents? A trace data study.
PLoS One. 2022 Feb 18;17(2):e0263815. doi: 10.1371/journal.pone.0263815. eCollection 2022.
4
The influence of meaning in life on children and adolescents' problematic smartphone use: A three-wave multiple mediation model.
Addict Behav. 2022 Mar;126:107199. doi: 10.1016/j.addbeh.2021.107199. Epub 2021 Nov 27.
8
Sleep quality as a mediator of problematic smartphone use and clinical health symptoms.
J Behav Addict. 2018 Jun 1;7(2):466-472. doi: 10.1556/2006.7.2018.40. Epub 2018 May 23.

本文引用的文献

2
Differences between problematic internet and smartphone use and their psychological risk factors in boys and girls: a network analysis.
Child Adolesc Psychiatry Ment Health. 2023 Jun 12;17(1):69. doi: 10.1186/s13034-023-00620-z.
3
Persistence of Lockdown Consequences on Children: A Cross-sectional Comparative Study.
Children (Basel). 2022 Dec 8;9(12):1927. doi: 10.3390/children9121927.
4
Duration, frequency, and time distortion: Which is the best predictor of problematic smartphone use in adolescents? A trace data study.
PLoS One. 2022 Feb 18;17(2):e0263815. doi: 10.1371/journal.pone.0263815. eCollection 2022.
7
Problematic smartphone use: Digital approaches to an emerging public health problem.
Digit Health. 2018 Mar 5;4:2055207618759167. doi: 10.1177/2055207618759167. eCollection 2018 Jan-Dec.
8
Determining Typical Smartphone Usage: What Data Do We Need?
Cyberpsychol Behav Soc Netw. 2018 Jun;21(6):395-398. doi: 10.1089/cyber.2017.0652. Epub 2018 May 21.
9
Beyond Self-Report: Tools to Compare Estimated and Real-World Smartphone Use.
PLoS One. 2015 Oct 28;10(10):e0139004. doi: 10.1371/journal.pone.0139004. eCollection 2015.
10
The smartphone addiction scale: development and validation of a short version for adolescents.
PLoS One. 2013 Dec 31;8(12):e83558. doi: 10.1371/journal.pone.0083558. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验