Security and Disruptive Technologies, National Research Council Canada , Ottawa, Ontario, Canada.
Aerospace, National Research Council Canada , Montreal, Quebec, Canada.
ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30840-30849. doi: 10.1021/acsami.7b09208. Epub 2017 Aug 31.
We have fabricated carbon nanotube (CNT)-polyurethane (TPU) sheets via a one-step filtration method that uses a TPU solvent/nonsolvent combination. This solution method allows for control of the composition and processing conditions, significantly reducing both the filtration time and the need for large volumes of solvent to debundle the CNTs. Through an appropriate selection of the solvents and tuning the solvent/nonsolvent ratio, it is possible to enhance the interaction between the CNTs and the polymer chains in solution and improve the CNT exfoliation in the nanocomposites. The composition of the nanocomposites, which defines the characteristics of the material and its mechanical properties, can be precisely controlled. The highest improvements in tensile properties were achieved at a CNT:TPU weight ratio around 35:65 with a Young's modulus of 1270 MPa, stress at 50% strain of 35 MPa, and strength of 41 MPa, corresponding to ∼10-fold improvement in modulus and ∼7-fold improvement in stress at 50% strain, while maintaining a high failure strain. At the same composition, CNTs with higher aspect ratio produce nanocomposites with greater improvements (e.g., strength of 99 MPa). Electrical conductivity also shows a maximum near the same composition, where it can exceed the values achieved for the pristine nanotube buckypaper. The trend in mechanical and electrical properties was understood in terms of the CNT-TPU interfacial interactions and morphological changes occurring in the nanocomposite sheets as a function of increasing the TPU content. The availability of such a simple method and the understanding of the structure-property relationships are expected to be broadly applicable in the nanocomposites field.
我们通过一步过滤法制备了碳纳米管(CNT)-聚氨基甲酸酯(TPU)片,该方法使用 TPU 溶剂/非溶剂组合。这种溶液方法可以控制组成和加工条件,大大减少过滤时间和大量溶剂的需求,以解开 CNT 的缠结。通过适当选择溶剂和调整溶剂/非溶剂比,可以增强 CNT 和聚合物链在溶液中的相互作用,提高纳米复合材料中的 CNT 剥离程度。纳米复合材料的组成可以精确控制,从而定义材料的特性和力学性能。在 CNT:TPU 重量比约为 35:65 时,拉伸性能得到最大提高,杨氏模量为 1270 MPa,应变 50%时的应力为 35 MPa,强度为 41 MPa,模量提高约 10 倍,应变 50%时的应力提高约 7 倍,同时保持较高的断裂应变。在相同的组成下,具有更高纵横比的 CNT 会产生具有更大改进的纳米复合材料(例如,强度为 99 MPa)。电导率也在相同的组成附近达到最大值,超过了原始碳纳米管的电导率。机械和电气性能的趋势是根据 CNT-TPU 界面相互作用和纳米复合材料片的形态变化来理解的,这是随着 TPU 含量的增加而发生的。这种简单方法的可用性以及对结构-性能关系的理解有望在纳米复合材料领域得到广泛应用。