School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, Yunnan Province, China.
Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, Jiangsu Province, China.
PeerJ. 2024 Mar 28;12:e17184. doi: 10.7717/peerj.17184. eCollection 2024.
Single-cell annotation plays a crucial role in the analysis of single-cell genomics data. Despite the existence of numerous single-cell annotation algorithms, a comprehensive tool for integrating and comparing these algorithms is also lacking.
This study meticulously investigated a plethora of widely adopted single-cell annotation algorithms. Ten single-cell annotation algorithms were selected based on the classification of either reference dataset-dependent or marker gene-dependent approaches. These algorithms included SingleR, Seurat, sciBet, scmap, CHETAH, scSorter, sc.type, cellID, scCATCH, and SCINA. Building upon these algorithms, we developed an R package named scAnnoX for the integration and comparative analysis of single-cell annotation algorithms.
The development of the scAnnoX software package provides a cohesive framework for annotating cells in scRNA-seq data, enabling researchers to more efficiently perform comparative analyses among the cell type annotations contained in scRNA-seq datasets. The integrated environment of scAnnoX streamlines the testing, evaluation, and comparison processes among various algorithms. Among the ten annotation tools evaluated, SingleR, Seurat, sciBet, and scSorter emerged as top-performing algorithms in terms of prediction accuracy, with SingleR and sciBet demonstrating particularly superior performance, offering guidance for users. Interested parties can access the scAnnoX package at https://github.com/XQ-hub/scAnnoX.
单细胞注释在单细胞基因组学数据分析中起着至关重要的作用。尽管存在许多单细胞注释算法,但也缺乏一种用于整合和比较这些算法的综合工具。
本研究详细研究了众多广泛采用的单细胞注释算法。基于参考数据集依赖或标记基因依赖方法的分类,选择了十种单细胞注释算法。这些算法包括 SingleR、Seurat、sciBet、scmap、CHETAH、scSorter、sc.type、cellID、scCATCH 和 SCINA。在此基础上,我们开发了一个名为 scAnnoX 的 R 包,用于整合和比较单细胞注释算法。
scAnnoX 软件包的开发为 scRNA-seq 数据中的细胞注释提供了一个统一的框架,使研究人员能够更有效地在 scRNA-seq 数据集中的细胞类型注释之间进行比较分析。scAnnoX 的集成环境简化了各种算法的测试、评估和比较过程。在评估的十种注释工具中,SingleR、Seurat、sciBet 和 scSorter 在预测准确性方面表现出色,其中 SingleR 和 sciBet 表现尤为出色,为用户提供了指导。感兴趣的各方可以在 https://github.com/XQ-hub/scAnnoX 访问 scAnnoX 包。